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Abstract We present an example of a highly connected closed network of servers, where
the time correlations do not vanish in the infinite volume limit. The limiting interacting
particle system behaves in a periodic manner. This phenomenon is similar to the continu-
ous symmetry breaking at low temperatures in statistical mechanics, with the average load
playing the role of the inverse temperature.
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Phase transition · Long-range order

1 Introduction

1.1 Interacting Particle Systems with Long Range Memory

The theory of phase transitions, among many results, substantiates the possibility of con-
structing reliable systems from non-reliable elements. As an example, consider the infinite
volume stochastic Ising model at low temperature T in dimension ≥ 2, see [10]. It is well
known, that if we start this system from the configuration of all pluses, then the evolution
under Glauber dynamics has the property that the fraction of plus spins at any time exceeds
1+m∗(T )

2 , which is bigger than 1
2 for T < Tcr . (Here m∗(T ) is the spontaneous magnetiza-

tion.) On the other hand, if we consider finite volume Ising model (with empty boundary
condition, say), then this property does not hold, and the system, started from the all plus
state, will be found in the state with the majority of the spins to be minuses at some later
(random) times. Therefore, the infinite system can remember, to some extent, its initial state,
while the finite system can not.
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There are many other examples of this kind, that belong to the theory of interacting
particle systems, such as voter model, contact model, etc. In all these examples we see
systems, that are capable of “remembering” their initial state for arbitrary long times.

In the present paper we are constructing a particle system that “remembers its initial
phase”. The rough analogy can be described as follows. Imagine a Brownian particle ϕ(t),
with a unit drift, which lives on a circle. Suppose the initial phase ϕ(0) = 0. Then the mean
phase ϕ̄(t) = t mod (2π), but with time we know the phase ϕ(t) less and less precisely, since
its variance grows, and in the limit t → ∞ the distribution of ϕ(t) tends to the uniform one.
However, one can combine infinitely many such particles by introducing suitable interaction
between them in such a way that the memory of the initial phase does not vanish and persists
in time. Namely, one has to put such particles at the sites of Z

3 and to introduce the attractive
interaction between them. If the initial state is chosen to be coherent, then the phase of every
particle will grow linearly, while its variance will stay bounded.

This is roughly what we do in the present paper. We consider a network of simple servers
which are processing messages. Since the service time of every message is random, in the
course of time each single server loses the memory of its initial state. So, in particular, the
network of non-interacting servers, started in the same state, becomes de-synchronized af-
ter a finite time. However, if one introduces certain natural interconnection between servers,
then it can happen that they are staying synchronized after an arbitrary long time, thus break-
ing some generally believed properties of large networks. We have to add here that such a
phenomenon is possible only if the mean number of particles per server is high enough; oth-
erwise the infinite network becomes de-synchronized, no matter which kind of interaction
between servers takes place. So the parameter of the mean number of particles per server,
called hereafter the load, plays the same role as the temperature in the statistical mechanics.

In other words, the transition we describe happens due to the fact that at low load the
behavior of our system is governed by the fixed point of the underlying dynamical system,
while at high load the dominant role is played by its periodic attractor. A similar phenom-
enon was described by Hepp and Lieb in [6].

Below we present the simplest example of the above behavior. But we believe that the
phenomenon we describe is fairly general. Its origin lies in the fact that any large network of
the general type possesses some kind of the continuous symmetry in the infinite limit, and
it is breaking of that symmetry at high load that causes the long-range order behavior of the
network. In our case this is the rotation symmetry, corresponding to the periodic orbit of the
limiting dynamical system.

1.2 Information Networks and Their Collective Behavior

Now we will describe one pattern of behavior of certain large networks, which was assumed
to be universal. It is known under the name of Poisson Hypothesis.

The Poisson Hypothesis is a device to predict the behavior of large queuing networks. It
was formulated first by L. Kleinrock in [7], and concerns the following situation. Suppose
we have a large network of servers, through which many customers are traveling, being
served at different nodes of the network. If the node is busy, the customers wait in the
queue. Customers are entering into the network from the outside via some nodes, and these
external flows of customers are Poissonian, with constant rates. The service time at each
node is random, depending on the node, and the customer. The PH prediction about the
(long-time, large-size) behavior of the network is the following:

• consider the total flow F of customers to a given node N . Then F is approximately equal
to a Poisson flow, P , with a time dependent rate function λN (T ).



Spontaneous Resonances and the Coherent States 69

• The exit flow from N —not Poissonian in general—has a rate function γN (T ), which is
smoother than λN (T ) (due to averaging, taking place at the node N ).

• As a result, the flows λN (T ) at various nodes N should tend to a constant limit λ̄N ≈
1
T

∫ T

0 λ(t)dt , as T → ∞, the flows to different nodes being almost independent.
• The above convergence is uniform in the size of the network.

Note that the distributions of the service times at the nodes of the network can be arbi-
trary, so PH deals with quite a general situation. The range of validity of PH is supposed to
be the class of networks where the internal flow to every node N is a union of flows from
many other nodes, and each one of these flows constitutes only a small fraction of the total
flow to N . If true, PH provides one with means to make easy computations of quantities of
importance in network design.

The rationale behind this conjectured behavior is natural: since the inflow is a sum of
many small inputs, it is approximately Poissonian. And due to the randomness of the ser-
vice time the outflow from each node should be “smoother” than the total inflow to this
node. (This statement was proven in [15] under quite general conditions.) In particular, the
variation of the latter should be smaller than that of the former, and so all the flows should
converge to corresponding constant values.

In the paper [14] the Poisson Hypothesis is proven for simple networks in the infinite
volume limit, under some natural conditions. For systems with constant service times it was
proven earlier in [17].

The purpose of the present paper is to construct a network that satisfies the above
assumption—that the flow to every given node is an “infinite” sum of “infinitesimally small”
flows from other nodes—but has coherent states. That means that the states of the servers are
evolving in a synchronous manner, and the “phase” of a given server behaves (in the ther-
modynamic limit—i.e. in the limit of infinite network) as a periodic non-random function,
the same for different servers.

We have to stress that our network exhibits these coherent states only in the regime when
the average number N of the customers per server—called in what follows the load—is
large. For low load we expect the convergence to the unique stationary state. This “high
temperature” kind of behavior will be the subject of the forthcoming work.

Our network ∇∞ is constructed from infinitely many elementary “triangular” networks ∇
(described below, in Sect. 2.1). A single triangle network ∇ = ∇1 with N customers is just
a Markov continuous time ergodic jump process with finitely many states. As N becomes
large, this Markov process tends (in the appropriate “Euler” limit) to a (5-dimensional) dy-
namical system �, possessing a periodic trajectory C , which turns out to be a stable (local)
attractor. The coordinate ϕ parameterizing that attractor C is the “phase” alluded to in the
previous subsection. The combined network corresponds in the same sense to the coupled
family �∞ of dynamical systems �. We establish the synchronization property of that cou-
pled family �∞, and that allows us to construct coherent states of the network ∇∞.

The networks ∇M , composed of M triangle networks ∇ , are ergodic. Their evolution
is given by irreducible finite state Markov processes with continuous time. Let πM be the
invariant measure of the process ∇M . As M → ∞, the sequence of Markov processes ∇M

converges weakly on finite time intervals to a certain limiting (non-linear Markov) process
∇∞. By the theorem of Khasminsky—see Theorem 1.2.14 in [10]—any accumulation point
of the sequence πM is a stationary measure of ∇∞. The special measure χ∞, describing “the
Poisson Hypothesis behavior”, is also a stationary measure of ∇∞. If χ∞ is a global attractor
of ∇∞, then, of course, the Poisson Hypothesis holds. The proof of the Poisson Hypothesis
in [14] was based on this argument. The existence of an accumulation point of the sequence
πM that differs from χ∞ would be the strongest counterexample to the Poisson Hypothesis.
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Fig. 1 (Color online)
The elementary network

This problem will be addressed in forthcoming papers. Here we prove a weaker statement
that χ∞ is not a global attractor for ∇∞.

In [16] Rybko and Stolyar observed that the condition that the workload at every node
of a multiclass open queueing network is less than 1 is not sufficient for the network to be
ergodic. In connection with this, they introduced a new approach to the analysis of ergodicity
of networks, which reduces the problem to the question of stability of the associated fluid
models. It was shown by them that the two-node priority network, considered in [16], is
ergodic if and only if for every initial state of the corresponding fluid model the total amount
of fluid vanishes eventually. Analogous deterministic examples were found by Kumar and
his collegues, see, for instance, [8]. This approach was further developed by Dai [3], Stolyar
[18], and Puhalsky and Rybko [13], who proved that stability of the fluid model is necessary
and sufficient for ergodicity of a certain class of general networks. Interesting instances
of non-ergodic queueing networks with mean load being smaller than the capacity, where
considered by Bramson [1, 2]. Our construction will be based on the following open network
introduced by Rybko and Stolyar (RS-network) in [16], see Fig. 1.

This queuing network with four types of customers is represented by the following
4-dimensional Markov process. Customers arrive to the network according to Poisson in-
flows of constant rate λ. The network consists of two nodes—Ā and B̄ . All the service
times are exponential, hence the network is defined by the rates, the evolution of types of
the customers and the priorities. The customer of type A (respectively, B) arrives to the node
Ā (respectively, B̄). The customer A is served with the rate γA, then is sent to B̄ , with type
AB. There he is served with the rate γAB and leaves the network. Symmetrically, γB = γA,
and γBA = γAB. Each customer AB is served before all the customers B , while each cus-
tomer BA is served before all the customers A. The nominal workload at nodes Ā and B̄

equals ρ = λ(γ −1
A + γ −1

BA). The service rates satisfy the conditions γAB < 2λ and ρ < 1. It
is proved in [16] that for certain values of the parameters the resulting Markov process is
transient. The fluid limit (or the Euler limit) of this network evolves in the following non-
trivial manner: each node is empty during a positive fraction of time, but at other moments
it is non-empty, and, moreover, the total amount of the fluid in the network tends linearly to
infinity.
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The rest of the paper is organized as follows. In Sect. 2 we define our networks ∇N
M.

Here M is the size of the network and N is the load per node. We formulate the preliminary
version of our Main Result. In Sect. 3 we study the limiting network, ∇N∞, and prove the
convergence ∇N

M → ∇N∞. In Sect. 4 we introduce the fluid networks, �M , which are coupled
dynamical systems, and their limit, �∞, which turns out to be a non-linear dynamical sys-
tem, in the sense made precise in this section. In particular, we show that �∞ is not ergodic.
In the next Sect. 5 we prove the convergence of the Non-Linear Markov Process ∇N∞ to its
Euler fluid limit, �∞, as N → ∞. The last Sect. 6 contains the formulation and the proof of
our main result, Theorem 17.

To save on notation, we consider throughout this paper the simplest elementary symmet-
ric model, depending on 3 parameters. We stress the fact that this (discrete) symmetry is not
essential in our case, and our results are valid for any small 6D-perturbation of our model.

2 Mean-Field Network and Its Limit

2.1 Basic Network

We will consider the following 5-dimensional Markov process, ∇N . It describes a closed
queuing network with N customers. It consists of three nodes: Ō , Ā and B̄ , through which
the customers go. All the service times are exponential, so we only need to specify the rates,
the evolution of types of the customers and the priorities. To simplify the presentation we
will make a specific choice of these rates. The node Ō serves all the customers on the FIFO
basis, with the rate γO = 3. After being served, the customer goes to the node Ā or to B̄ ,
choosing one of them with probability 1

2 . If he arrives to Ā, he gets the type A, otherwise B.

The customer A is served with the rate γA = 10, then is sent to B̄ , with type AB. There he
is served with the rate γAB = 2 and goes back to Ō. Symmetrically, γB = 10, and γBA = 2.

Each customer AB is served before all the customers B , and each customer BA is served
before all the customers A. More precisely, if an AB customer arrives to the B̄ node, while
the node is serving some B customer, his service is stopped and is resumed only at the
moment when the service of all AB customers is over.

Of course, the above choice of the rates is not the only possible. Any other choice would
be as good, provided the corresponding fluid network, which can be associated to our queu-
ing network, has some specific property—namely, we need this fluid network to have a
cyclic regime. The fluid network will be described in details in Sect. 4.2 below.

2.2 M Coupled Processes

Let ∇N
M be the Markov process, obtained from M copies of ∇N , interconnected in the mean-

field manner, see Fig. 2. We take the total number of customers to be NM.

The mean field network is defined as follows. Each node Ōi , i = 1, . . . ,M , is connected
to all of the nodes Āj , B̄j , j = 1, . . . ,M , and each customer, leaving the node Ōi , goes to
each of the 2M nodes Āj , B̄j with the same probability 1

2M
. The rate of leaving the node

Ōi is the same, as above, i.e. equals to γO = 3. In a similar way, the A customers of every
node Āi are exiting it with the rate γAB = 10, and then choose one of the B̄j nodes with
probability 1

M
, and so on. The priorities are kept the same: if the node Āi , say, is in the state

with customers of both kinds—A and BA—present, then the BA customers are served first,
with no delay.

The configuration of the process is given by the number of customers of each type at each
of the 3M nodes, that is by an integer point in (R5M)+. Due to the mean-field symmetry, we
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Fig. 2 (Color online)
Two coupled processes

can factor the set of configurations by the product of permutation groups SM ×SM ×SM , and
still have the Markov process. The orbit of the symmetry group corresponds to a collection
of M3 integer points x̄i ∈ (R5)+, some of which may coincide.

It is convenient for us to index these configurations by the atomic measures,

{x̄i} � 1

M3

M3
∑

i=1

δ x̄i
N

. (1)

In fact, they belong to the set M(( 1
N

Z
5)+). Note that every such measure μ factors into a

product

μ ≡ (
μO,μĀ,μB̄

)≡ μO × μĀ × μB̄ ≡ 
Ō [μ] × 
Ā [μ] × 
B̄ [μ]

of probability measures on R
1 = {xO}, resp. R

2 = {xA, xBA} and R
2 = {xB, xAB}. Here

we denote by 
∗-s the various projections (or marginals). We have μO = 1
M

∑M

i=1 δ x̄i
N

for some (not necessarily distinct) x̄i ∈ Z
1, i = 1, . . . ,M , likewise μĀ = 1

M

∑M

i=1 δ x̄′
i

N

,

μB̄ = 1
M

∑M

i=1 δ x̄′′
i
N

, x̄ ′
i , x̄

′′
i ∈ Z

2. We will denote the set of all such measures by MM. The

state νN
M of our Markov process is then an element from M(MM), i.e. a measure on the mea-

sure space. Among these there are configurations of the process ∇M , namely, the δ-measures
δm, with m ∈ MM , so we can define in this way the embedding MM ⊂ M(MM). However,
even if the initial state νN

M(0) of ∇M happens to be such a measure δm, i.e. νN
M(0) ∈ MM ,

then at any positive t we have only that νN
M(t) ∈ M(MM), while in general νN

M(t) /∈ MM.

For the future use we will write down the rates of the factor-process. Let v be some
measure of the form (1), while v′ be the measure obtained from v after a single jump of
the initial process. For example, let us consider the case when the jump in question is of
AB → O type, from B̄-type server to Ō server (with the rate γAB ). That means that for some
unique well-defined (by the pair v, v′) elements xB̄ = (xB, xAB) ∈ ( 1

N
Z

2)+, xO ∈ ( 1
N

Z
1)+

we have:

v′ (xB̄

)= v
(
xB̄

)− 1

M
, v′ (xO) = v (xO) − 1

M
. (2)



Spontaneous Resonances and the Coherent States 73

Of course, for another pair: x̃B̄ = (xB, xAB − 1), x̃O = xO + 1, we have

v′ (x̃B̄

)= v
(
x̃B̄

)+ 1

M
, v′ (x̃O) = v (x̃O) + 1

M
, (3)

while at all other locations the two measures are the same. Since there are Mv(xB̄) locations
where the jump could originate, and the fraction of sites with the desirable outcome is v(xO),
we have for the rate c(v, v′) ≡ cAB(v, v′) the expression

c
(
v, v′)= γABMv

(
xB̄

)
v (xO) .

If the measures v, v′ are not related by (2)–(3), then the rate cAB(v, v′) = 0.
We will keep the notation ∇M for the factor-process.

2.3 M → ∞ Limit: Non-Linear Markov Process

Suppose that a sequence of initial states νM(0) ∈ M(MM) of the Markov processes ∇M

is given, which satisfy νM(0) = δmM
, with mM ∈ MM , and moreover the weak limit

ν = limM→∞ mM exists. Then the weak limits ν(t) = limM→∞ νM(t) exist for every t , and,
moreover, for every t we have ν(t) ∈ M. This is the Non-Linear Markov Process, NLMP,
∇∞. The process is called Non-Linear since the transition mechanism to evolve from a given
configuration depends not only on that configuration, but also on the measure from which
this configuration was drawn. Such processes were introduced in [11, 12], see also [14]. The
above limiting NLMP-s depend on the parameter N , which is the number of clients per basic
queuing network. We want to study the dependence on N , so we explicitly (re)introduce the
index N in our notation. Thus, νN(t) refers to the states of the process ∇N∞.

We will describe the limiting NLMP in the next Sect. 3. Now we can formulate the
preliminary version of our main result.

Theorem 1 Consider the Non-Linear Markov Process ∇∞, started from the measure νN
0 ,

which is close enough to the atomic measure with the single atom at vector X̄(A,N) ∈
( 1

N
Z

5)+, having coordinate xA = 1 and all other coordinates zero. “Close enough” here
means that for some ε > 0 small enough we have ρKROV(νN

0 , δX̄(A,N)) < ε. Suppose addi-
tionally that the α-exponential moment of the measure νN

0 is less than a certain quantity
E; α = α(ε), E = E(ε). Then the measure νN

t does not converge to any limit as t → ∞,
provided N is large enough.

More precisely, there exists a sequence of times t ′k → ∞, such that

νN
t ′
k

[
UN

(
X̄ (A,N)

)]
> 1 − δN ,

with δN → 0 as N → ∞. Here UN(X̄(A,N)) is a neighborhood of X̄(A,N) of radius κN ,
with κN → 0 as N → ∞. At the same time, there exists another sequence t ′′k → ∞, for
which νN

t ′′
k
[UN(X̄(B,N))] > 1 − δN . In words, the measure vt exhibits oscillations.

Accordingly, the states of finite size networks, (νN
M)t , exhibit oscillations for long times,

before converging to their limits. The duration of the oscillation regime diverges with M.

Different components of (νN
M)t are oscillating almost coherently, for large M.
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3 The Convergence ∇N
M → ∇N

∞: Application of the Trotter-Kurtz Theorem

Here we prove the convergence of the Markov processes ∇N
M to the Non-Linear Markov

process ∇N∞. We will do that by writing down their generators AM and A, and by subsequent
application of the Trotter-Kurtz theorem (Proposition 1.3.3 in [5]), which we formulate now.

Let AM,A : X → X are (unbounded) operators on the Banach space X, and X0 ⊂ X is
a dense subspace, belonging to the domains of definition of all AM -s and A. The following
two conditions are sufficient for the convergence of the semigroups exp{tAM} → exp{tA}
on X as M → ∞:

1. ∀ψ ∈ X0 we have AM(ψ) → A(ψ) as M → ∞;
2. there exists a dense subspace X1 ⊂ X0, such that ∀ψ ∈ X1 we have exp{tA}(ψ) ∈ X0.

Such subspace X0 is called a core of A.

3.1 Equation for the Evolution ∇N∞

Here we study the limiting process ∇N∞. We write down its generator, and we exhibit its core.
Let νt be the evolution of the measure under ∇N∞. To find it we have to specify the

initial measure ν0 and then to solve the Cauchy problem for the differential equation, which
equation we will write now.

To do it we first introduce the (Poisson) rates λ̄(t) = (λO(t), λA(t), λB(t), λAB(t),

λBA(t)), corresponding to the state νt :

λa(t) = γa

∑

x:xa>0

νt (x) , for a = O,AB,BA, (4)

λA(t) = γA

∑

x:xA>0,xBA=0

νt (x) , λB(t) = γB

∑

x:xB>0,xAB=0

νt (x) . (5)

We also introduce the 5D vectors �a to be the basis vectors of the lattice Z
5. Then

dνt (x)

dt
= −νt (x)

(
∑

a=O,A,B,AB,BA

λa(t)

)

− νt (x)

(
∑

a=O,AB,BA

γa

(
1 − δxa

)+ γA

(
1 − δxA

)
δxBA

+ γB

(
1 − δxB

)
δxAB

)

+ νt (x − �O)
(
1 − δxO

)
(λAB(t) + λBA(t))

+
∑

a=A,B

νt (x − �a)
(
1 − δxa

) λO(t)

2

+ νt (x − �AB)
(
1 − δxAB

)
λA(t) + νt (x − �BA)

(
1 − δxBA

)
λB(t)

+
∑

a=O,AB,BA

νt (x + �a)γa

+ νt (x + �A)γAδxBA
+ νt (x + �B)γBδxAB

. (6)

This is the value of the function Aϕx , where A is the generator of the Markov semigroup
St = exp{tA} of the process ∇N∞, and the function ϕx , which on every measure ν ∈ M(Z5+)
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takes value ν(x), computed at the point νt . As we will show below, the system (6) has a
unique solution.

For reasons which will be explained later, it will be more convenient for us to use another
basis in the space of functions on measures. Namely, for every ν ∈ M(Z5+) and every
x ∈ Z

5+ we define the function u(x) =∑
y≥x ν(y), where the summation goes over all sites

y such that all the coordinates of the difference y − x are non-negative. Then the functions
λa(t) (see (4)) are given in the new variables as

λa(t) = γaut (�a) ,

while the action of the generator A on the function u is given by the following (simpler)
equation:

dut (x)

dt
= −

∑

a=O,AB,BA

(ut (x) − ut (x + �a))γa

(
1 − δxa

)

− (ut (x) − ut (x + �A) − ut (x + �AB)

+ ut (x + �A + �AB)) γA

(
1 − δxA

)
δxBA

− (ut (x) − ut (x + �B) − ut (x + �BA)

+ ut (x + �B + �BA)) γB

(
1 − δxB

)
δxAB

+ (ut (x − �O) − ut (x))
(
1 − δxO

)
(γABut (�AB) + γBAut (�BA))

+
∑

a=A,B

(ut (x − �a) − ut (x))
(
1 − δxa

) γOut (�O)

2

+ (ut (x − �AB) − ut (x))
(
1 − δxAB

)
γAut (�A+�BA)

+ (ut (x − �BA) − ut (x))
(
1 − δxBA

)
γBut (�B+�AB) . (7)

The first five lines correspond to the second line of (6), while the last four—to the lines 3–5;
the remaining lines of it disappear from the equations for u. The advantage of (7) over (6)
is that the equation for dut (x)

dt
contains only ut (y)-s with y-s in some finite set Y (x), and

moreover maxx |Y (x)| = 20.

Of course, the coordinates u(·)-s on M(Z5+) are not independent. There are two kinds
of relations between them:

1. every value ν(x) equals to Lx(u), where L is a certain linear form, depending on u(y)

with y-s having form y = x +∑
ea�a , ea = 0,1; we need that for all x Lx(u) ≥ 0;

2.

lim
x→∞u (x) = 0. (8)

For technical reasons we will extend the action of our Markov semigroup to the space
M(K) of measures on the compactification K of the lattice Z

5+, where

K = {
Z

+ + ∞}5
.

The functions {u(x), x ∈ Z
5+} on M(K) also play the role of coordinates there, provided

that the relation (8) is dropped. The evolution of the measures is given by the same set of (7).
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We supply M(K) with the topology of weak convergence. (We repeat for clarity that
the subset M(Z5+) ⊂ M(K) is invariant under our semigroup.) Let C 0 = C(M(K)) be the
space of functions on M(K), continuous with respect to this topology.

Theorem 2 The semigroup St acts on the space C = C(M(K)) of continuous functions on
M(K), and is strongly continuous and contracting.

Proof 1. Let us show the existence of the solutions to (7). The equations (7) are describ-
ing the evolution of the “closed” system. Consider now the corresponding “open” system,
defined by the (arbitrary) rates λ̄ = λa(t) of the Poisson inflows and the initial state u0. It
evolves according to the equations

dut (x)

dt
= −

∑

a=O,AB,BA

(ut (x) − ut (x + �a)) γa

(
1 − δxa

)

− (ut (x) − ut (x + �A) − ut (x + �AB)

+ ut (x + �A + �AB)) γA

(
1 − δxA

)
δxBA

− (ut (x) − ut (x + �B) − ut (x + �BA)

+ ut (x + �B + �BA)) γB

(
1 − δxB

)
δxAB

+ (ut (x − �O) − ut (x))
(
1 − δxO

)
(λAB(t) + λBA(t))

+
∑

a=A,B

(ut (x − �a) − ut (x))
(
1 − δxa

) λO (t)

2

+ (ut (x − �AB) − ut (x))
(
1 − δxAB

)
λA(t)

+ (ut (x − �BA) − ut (x))
(
1 − δxBA

)
λB(t).

The corresponding exit rates ba are given by the natural relations

bλ̄
a(t) = γaut (�a) .

Consider the function d̄ λ̄(t):

dλ̄
O(t) = bλ̄

AB (t) + bλ̄
BA(t),

dλ̄
A(t) = dλ̄

B(t) = 1

2
bλ̄

O(t),

dλ̄
AB(t) = bλ̄

A (t) , dλ̄
BA(t) = bλ̄

B(t).

The closed system is a fixed point of the map λ̄
ψu0� d̄ λ̄, i.e. a solution of the equation

λ̄ = d̄ λ̄.

To see the existence of a fixed point, let us introduce the functions �̄, B̄�̄ and D̄�̄ :

�a(t) =
∫ t

0
λa(t)dt, B�̄

a (t) =
∫ t

0
bλ̄

a(t)(t)dt, D�̄
a (t) =

∫ t

0
dλ̄

a (t)dt,
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and the corresponding mapping �̄
�u0� D̄�̄. The functions �̄, B̄�̄ and D̄�̄ are monotone

continuous, moreover, the functions B̄�̄ and D̄�̄ have uniformly bounded derivatives. Let c

be the upper bound for these derivatives, and C be the space of all continuous monotone 5D
vector-functions on [0, T ], vanishing at zero, with the derivatives bounded by c once they
exist. Then C is compact and convex, therefore the map �u0 : C → C has at least one fixed
point.

2. We now will show that for every u0 the map �u0 is a contraction; that will imply
the uniqueness of the solution. Without loss of generality we can assume that T is small.
Informally, the contraction takes place because the exit rates bλ̄

a(t) for t ∈ [0, T ] with T

small depend mainly on the initial state u0 : the new clients, arriving during the time [0, T ]
have no chance to be served before T , if there were clients already waiting. Therefore the
“worst” case for us is when the initial state ν0 is the measure δ0, having a unit atom at
0 ∈ Z

5+.

So let λ1(t), λ2(t), t ∈ [0, T ] be the rates of two Poisson inflows to the empty server, and
γ be the service rate. We want to estimate the difference b1(t) − b2(t) of the rates of the
exit flows. We can couple the two service processes in the following way: let λ(t) = min
{λ1(t), λ2(t)}. Then we write λi(t) = λ(t) + ηi(t), where ηi(t) = λi(t) − λ(t). We will call
the clients arriving with the rate λ(t) as colorless, and we call the η1(t) clients as red, while
the η2(t) clients as blue. The colorless clients have priority in their service: if a colorless
client arrives, then all the colored ones have to wait—even the one currently under the ser-
vice. Then the difference |b1(t) − b2(t)| is bounded from above by the sum of the exit rates
of colored clients, which does not exceed

|b1(t) − b2(t)| ≤ γ Pr

(
server is occupied by a
colored client at the moment t

)

≤ γ

∫ t

0
|λ1(t) − λ2(t)|dt.

Hence we have contraction with the contraction rate at most γ T , which is small for small T .

We denote by λ̄u(t) the unique fixed point of �u.

3. Finally we prove that the semigroup preserves the space of continuous functions. First
of all we observe that the map �u depends on the initial measure u in a continuous way.
Therefore the same is true for λ̄u(t), the fixed point of �u. Hence u(t) depends continuously
on u(0). �

Let us consider the subspace C 2 ⊂ C 0 of functions f , which have the following proper-
ties:

1. for every x ∈ Z
5+ the function f has the first derivative ∂f

∂u(x)
;

2. for every x, y ∈ Z
5+ the function f has the second derivative ∂2f

∂u(x)∂u(y)
;

3. all these derivatives are bounded, uniformly in x, y.

It is easy to see that the set of coordinate functions {u(x), x ∈ Z
5+} on M(K) can distin-

guish any two measures from M(K). Due to the compactness of M(K) we can apply the
Stone-Weierstrass theorem, which implies that the subspace C 2 ⊂ C 0 is dense in C 0. We now
will show the following

Proposition 3 For every t we have St (C 2
0) ⊂ C 2, where the subspace C 2

0 ⊂ C 2 consists of all
functions depending only on finitely many variables {u(x)}. In particular, the subspace C 2 is
a core of the generator A.
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Proof To do this we will use Proposition 1 of the paper [4]:

Lemma 4 Consider the infinite system of equations

d

dt
zk(t) =

∑

i

aki(t)zi(t) + bk(t), t ≥ 0.

Suppose that for all k

∑

i

|aki(t)| ≤ a, |bk(t)| ≤ b0 exp {bt} , |zk (0)| ≤ c,

with a < b. Then

|zk(t)| ≤ c exp {at} + b0

b − a
(exp {bt} − exp {at}) .

From ( 7) it follows immediately, that

d

dt

(
∂ut (v)

∂u0 (x)

)

=
∑

w∈Y(v)

āvw(t)

(
∂ut (w)

∂u0 (x)

)

,

with
∑

w∈Y(v) |āvw(t)| < â, | ∂u0(v)

∂u0(x)
| ≤ 1, for some â < ∞, uniformly in v, so Lemma 4 ap-

plies, and all the derivatives | ∂ut (v)

∂u0(x)
| are uniformly bounded, provided t < T . Further on,

d

dt

(
∂2ut (v)

∂u0 (x) ∂u0 (y)

)

=
∑

w∈Y(v)

āvw(t)

(
∂2ut (w)

∂u0 (x) ∂u0 (y)

)

+ b̃v(t),

with the same āvw(t)-s, while the term b̃v(t), consisting of the products of the first derivatives
∂ut (w

′)
∂u0(x)

∂ut (w
′′)

∂u0(y)
, is also uniformly bounded, as was just shown, provided t < T . Therefore the

derivatives | ∂2ut (v)

∂u0(x)∂u0(y)
| are uniformly bounded as well.

For other functions we just use the chain rule. �

3.2 Equation for the Evolution ∇N
M and the Convergence

Now we will write the generator AM of the process ∇N
M. Let ψ(·) be a function on MM . (In

fact, we need it to be defined on a smaller set MM ∩ M(( 1
N

Z
5)+). Throughout this section

the value of N will be fixed, and we will keep it just 1, in order to simplify the notation.) We
will introduce the following notations for the increments of the measure v = (vŌ, vĀ, vB̄)

(which are themselves (signed) measures on Z
1 or Z

2):

�O,x (y) =
⎧
⎨

⎩

1 if y = x,

−1 if y = x − 1, x, y ∈ Z
1,

0 otherwise,

�A,xĀ
(y) =

⎧
⎨

⎩

1 if y = xĀ ≡ (xA, xBA),

−1 if y = (xA − 1, xBA) , xĀ, y ∈ Z
2,

0 otherwise,
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�BA,xĀ
(y) =

⎧
⎨

⎩

1 if y = xĀ ≡ (xA, xBA),

−1 if y = (xA, xBA − 1) , xĀ, y ∈ Z
2,

0 otherwise,

and similar definitions for the remaining measures �B,xB̄
and �AB,xB̄

. Then

(AMψ) (v) =
∑

v′
c
(
v, v′) [ψ

(
v′)− ψ (v)

]

=
∑

xO≥1

M
γO

2
vŌ (xO)

∑

xĀ

vĀ

(
xĀ

)

×
[

ψ

(

vŌ − �O,xO

M
,vĀ + �A,xĀ+(1,0)

M
,vB̄

)

− ψ
(
vŌ, vĀ, vB̄

)
]

+
∑

xO≥1

M
γO

2
vŌ (xO)

∑

xB̄

vB̄

(
xB̄

)

×
[

ψ

(

vŌ − �O,xO

M
,vĀ, vB̄ + �B,xB̄+(1,0)

M

)

− ψ
(
vŌ, vĀ, vB̄

)
]

+
∑

xĀ:xBA≥1

MγBAvĀ

(
xĀ

)∑

xO

vŌ (xO)

×
[

ψ

(

vŌ + �O,xO+1

M
,vĀ − �BA,xĀ

M
,vB̄

)

− ψ
(
vŌ, vĀ, vB̄

)
]

+
∑

xB̄ :xAB≥1

MγABvB̄

(
xB̄

)∑

xO

vŌ (xO)

×
[

ψ

(

vŌ + �O,xO+1

M
,vĀ, vB̄ − �AB,xB̄

M

)

− ψ
(
vŌ, vĀ, vB̄

)
]

+
∑

xA≥1

MγAvĀ (xA,0)
∑

xB̄

vB̄

(
xB̄

)

×
[

ψ

(

vŌ, vĀ − �A,(xA,0)

M
,vB̄ + �AB,xB̄+(0,1)

M

)

− ψ
(
vŌ, vĀ, vB̄

)
]

+
∑

xB≥1

MγBvB̄ (xB,0)
∑

xĀ

vĀ

(
xĀ

)

×
[

ψ

(

vŌ, vĀ + �BA,xĀ+(0,1)

M
,vB̄ − �B,(xB ,0)

M

)

− ψ
(
vŌ, vĀ, vB̄

)
]

. (9)

Suppose now that the function ψ is differentiable in each of the variables vŌ(xO), xO ∈ Z
1,

vĀ(xĀ), xĀ ∈ Z
2, vB̄(xB̄), xB̄ ∈ Z

2. Then each of the six increments in (9) equals to the corre-
sponding derivative ψ ′ of ψ , computed at some intermediate point. If moreover the function
ψ is continuously differentiable (which is implied by the twice differentiability), we can
take a limit as M → ∞, obtaining the convergence to the limiting operator
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(Aψ) (v) =
∑

xO≥1,xĀ

γO

2
vŌ (xO) vĀ

(
xĀ

)
[

∂ψ (v)

∂(vŌ (xO − 1))
− ∂ψ (v)

∂(vŌ (xO))

+ ∂ψ (v)

∂(vĀ (xA + 1, xBA))
− ∂ψ (v)

∂(vĀ (xA, xBA))

]

+
∑

xO≥1,xB̄

γO

2
vŌ (xO) vB̄

(
xB̄

)
[

∂ψ (v)

∂(vŌ (xO − 1))
− ∂ψ (v)

∂(vŌ (xO))

+ ∂ψ (v)

∂(vB̄ (xB + 1, xAB))
− ∂ψ (v)

∂(vB̄ (xB, xAB))

]

+
∑

xĀ:xBA≥1,xO

γBAvĀ

(
xĀ

)
vŌ (xO)

[
∂ψ (v)

∂(vŌ (xO + 1))
− ∂ψ (v)

∂(vŌ (xO))

+ ∂ψ (v)

∂(vĀ (xA, xBA − 1))
− ∂ψ (v)

∂(vĀ (xA, xBA))

]

+
∑

xB̄ :xAB≥1,xO

γABvB̄

(
xB̄

)
vŌ (xO)

[
∂ψ (v)

∂(vŌ (xO + 1))
− ∂ψ (v)

∂(vŌ (xO))

+ ∂ψ (v)

∂(vB̄ (xB, xAB − 1))
− ∂ψ (v)

∂(vB̄ (xB, xAB))

]

+
∑

xB̄ ,xĀ:xA≥1

γAvĀ (xA,0) vB̄

(
xB̄

)
[

∂ψ (v)

∂(vĀ (xA − 1,0))
− ∂ψ (v)

∂(vĀ (xA,0))

+ ∂ψ (v)

∂(vB̄ (xB, xAB + 1))
− ∂ψ (v)

∂(vB̄ (xB, xAB))

]

+
∑

xĀ,xB̄ :xB≥1,

γBvB̄ (xB,0) vĀ

(
xĀ

)
[

∂ψ (v)

∂(vB̄ (xB − 1,0))
− ∂ψ (v)

∂(vB̄ (xB,0))

+ ∂ψ (v)

∂(vĀ (xA, xBA + 1))
− ∂ψ (v)

∂(vĀ (xA, xBA))

]

.

Let us apply this formula to the “coordinate” function ψ(·) = φy(·), where φy(v) = v(y) ≡
vO(yO)vĀ(yĀ)vB(yB̄). The result is the one given by (6):

(Aφx) (v) = −v (x)

(
∑

a=O,A,B,AB,BA

λa(t)

)

− v (x)

(
∑

a=O,AB,BA

γa

(
1 − δxa

)+ γA

(
1 − δxA

)
δxBA

+ γB

(
1 − δxB

)
δxAB

)

+ v (x − �O)
(
1 − δxO

)
(λAB(t) + λBA(t))

+
∑

a=A,B

v (x − �a)
(
1 − δxa

) λO(t)

2

+ v (x − �AB)
(
1 − δxAB

)
λA(t) + v (x − �BA)

(
1 − δxBA

)
λB(t)
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+
∑

a=O,AB,BA

v (x + �a)γa

+ v (x + �A)γAδxBA
+ v (x + �B)γBδxAB

.

Since the space of functions of finitely many v-s coincides with that depending of finitely
many u-s, that finishes the proof.

4 Fluid Networks

One of the key ingredients of the proof of our Main result is the investigation of the fluid
(Euler) limits of various networks. They are introduced in the present section.

4.1 Fluid Systems with One Fluid

The fluid systems with one fluid are the following simple dynamical systems. Consider
the containers V1,V2, . . . , Vn, filled (partially) with water. Suppose that some pairs of these
containers are connected by (directed) pipes, through which the water can flow. On every
pipe i, j there is a pump ρij working, with the capacity of sending γij ≥ 0 units of water per
unit time from Vi to Vj . The pumps are working constantly, and if the container Vi has less
water than the pump ρij can handle, the result is that the pump sucks in whatever there is.
For example, if the network is given by the graph

V1
γ12→ V2

γ23→ V3,

with γ12 = 1
2 , γ23 = 1, then in a while the container V2 will be empty, and the flow along

the pipe 23 will be 1
2 (provided the water supply in V1 lasts). If a container Vi has several

pipes ijk attached, then the water is shared by the pumps ρijk proportionally to the capacities
γijk (this is relevant only in the situation when the level of water in Vi is zero, and all the
incoming water immediately leaves it).

Suppose now that at the moment T = 0 all the containers are filled with water in the
amounts of vi(0), and then we turn on all the pumps. We are looking on the levels vi(t), as
they are changing in time. It turns out that there exists a time T ′ (depending on the system),
after which the levels vi(t) become stable and do not change anymore. (Some of them can
in fact be zero.) In particular, such a system can never exhibit a cyclic behavior. Of course,
the stability of the levels does not imply that the water in the network does not flow. It just
means that for every container the amount of fluid entering is equal to the amount of fluid
leaving.

We will not provide the proof of this known statement (see [3] and the references there),
since we will not use this fact. Below we will consider fluid networks which do exhibit
cyclic behavior, and we find such examples among the fluid networks with several kinds of
fluids.

4.2 Basic Fluid Network

We will consider the following 5-dimensional dynamical system, �, which is a closed ver-
sion of the open RS-network. It consists of three nodes: Ō , Ā and B̄ , through which various
fluids are passing, see Fig. 3. The node Ō has one type of the fluid, in the amount xO ≥ 0,
and that fluid flows into the nodes Ā and B̄ in equal amounts. The rate of this flow γO = 3,
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Fig. 3 (Color online) Basic fluid
network

which means that three units of the fluid xO leave Ō per unit time (provided the supply lasts,
of course), so each of the two nodes Ā and B̄ gets 3

2 units of incoming fluids, A and B , per
unit time. The amounts of these fluids are denoted by xA and xB. The fluid A then goes to
the node B̄ , where it turns into the fluid AB , while the fluid B goes to Ā and turns there
into BA. The corresponding rates are γA = γB = 10. The fluids AB and BA then go back
to Ō , with the rates γAB = γBA = 2. The last thing which has to be specified is the following
priority: if the node Ā is in the state with both amounts xA and xBA positive, then the fluid
BA goes first. One can think that the fluid BA is heavier and of higher viscosity than A,
so it goes to the bottom of the node Ā and flows out first (and relatively slow). The same
applies to the node B̄.

As stated, the system is not well-defined. For example, the dynamics is not specified if
we try to start it from the configuration

xA = a > 0, xB = b > 0, xBA = xAB = 0, xO = 1 − a − b. (10)

The reason is that if the fluid A “starts first”, then it will create some amount of the heavy
fluid AB in B̄ , so the fluid B in B̄ will be blocked. The same holds for the fluid B “starting
first”.

The precise definition of the system, given below, follows [3, 16, 18]. Consider first the
simplest case of a single node with capacity γ per unit time. Let the initial amount of fluid
x(0) be given, an let Y (t) be the net amount of fluid that arrives to the node during the time
interval [0, t]. In what follows we will call it the net inflow. The function Y (t) is monotone
non-decreasing function, Y (0) = 0, and we assume that Y (t) is Lipschitz continuous, t ≥ 0.
It is easy to check that the evolution of the amount x(t) is given by

x(t) = V (t) + U(t), (11)

where V (t) = x(0) + Y (t) − γ t is called the virtual level of the fluid, while U(t) =
max{0,− infs∈[0,t] V (s)} is the unused service capacity of our node.

We introduce for the correspondence (11) the notation

x(·) = W(γ,x(0), Y (·)), (12)
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that is, W maps the initial fluid level and the inflow function to the evolution of fluid level.
As we will show later (in Lemma 13), the map W is Lipschitz continuous map from R ×
C[0,∞) to C[0,∞).

Further on, let Z(t) be the total amount of fluid that leaves the node during the time
interval [0, t]: Z(t) = x(0) + Y (t) − x(t). Again, the function Z(t)—the net outflow—is
monotone non-decreasing Lipschitz continuous, with Z(0) = 0. By assumption, the deriva-
tives z(t) = Ż(t), y(t) = Ẏ (t), existing a.e., satisfy

z(t) =
{

γ if x(t) > 0,

y(t) otherwise.

This property is the reason to call our discipline work-conserving; the server is always work-
ing at its full capacity.

In the same way we can treat the node through which several fluids are passing. Thus
we introduce the vector Ȳ (t) = {Y1(t), . . . , Yn(t)} of the net inflows during the time inter-
val [0, t], each Yi(t) being non-decreasing and Lipschitz continuous. The vector Z̄(t) will
denote the corresponding collection of the net outflows. (Of course, it does depend on the
priorities of the fluids.) Consider again the derivatives yi(t) = Ẏi (t) and zi(t) = Żi(t) (they
exist for almost all t and define Yi(t) and Zi(t) in a unique way once we fix Yi(0) and Zi(0)

to be zero). Introduce also the workload rate by v(t) =∑
yi(t)γ

−1
i , where γi are the service

rates. The service discipline of our node is work-conserving, if the following property holds:
once ‖x(t)‖ > 0, we have

∑
zi(t)γ

−1
i = 1; (13)

otherwise

zi(t) = yi(t) (14)

for all i. The following statement is immediate:

Proposition 5 Let x̄(0) = 0 and v(t) ≤ 1 for almost all t ≥ 0. Then x̄(t) = 0, t ≥ 0.

The system described in the beginning of the present subsection corresponds to the fol-
lowing specification of the above general formulation. We have Ȳ (t) ∈ (R5)+, and in terms
of the map W (see (12)) the evolution is given by the equations:

xO(·) = W(3, xO(0), YO(·)), (15)

xBA(·) = W(2, xBA(0), YBA(·)), (16)

xA(·) = W(10,5xBA(0) + xA(0),5YBA(·) + YA(·)) − 5xBA(·), (17)

the equations for xB and xAB being symmetric. Then for the derivatives, whenever they exist,
we derive from (15)–(17) that

d

dt
xO(t) =

{
yO(t) − 3 if xO(t) > 0, or if xO(t) = 0 and yO(t) − 3 > 0,

0 if xO(t) = 0 and yO(t) − 3 ≤ 0;

d

dt
xAB(t) =

{
yAB(t) − 2 if xAB(t) > 0, or if xAB(t) = 0 and yAB(t) − 2 > 0,

0 if xAB(t) = 0 and yAB(t) − 2 ≤ 0;



84 A. Rybko et al.

d

dt
xA(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

yA(t) if xBA(t) > 0,

yA(t) − 10 2−yAB(t)

2 if xA(t) > 0, xBA(t) = 0, yAB(t) − 2 ≤ 0; or
if xA(t) = xBA(t) = 0, yAB (t) − 2 ≤ 0

and yA(t) − 10 2−yAB(t)

2 > 0

0 if xA(t) = xBA(t) = 0, yAB (t) − 2 ≤ 0

and yA(t) − 10 2−yAB(t)

2 ≤ 0;

the equations for xB and xBA being symmetric.
In fact, for most points in the phase space the above differential equations are sufficient

to describe our dynamical system, since the set of values t where one of the derivatives does
not exist is nowhere dense. However, this is not true for all points, and so we need to use
more complicated equations (15–17).

The above relations define what we will call Non-Homogeneous Dynamical System,
NHDS. We will denote this dynamical system by �(Ȳ ), since it is driven by the inflow Ȳ .

This is just a usual non-autonomous dynamical system. All the non-linear dynamical sys-
tems, which will appear below, correspond to different choices of the flows Ȳ .

Let now x̄(t) be the trajectory of the NHDS, corresponding to the initial state x̄(0) and
the given inflows Ȳ (t). We define the closed fluid network evolution � of the point x̄(0) as
the evolution x̄(t) under any dynamics �(Ȳ (t)), for which the following relations between
the inflows Ȳ (t) and the outflows

Z̄(t) ≡ Z̄x̄,Ȳ (t) = x̄(0) + Ȳ (t) − x̄(t) (18)

hold:

YO(t) = Z
x̄,Ȳ
AB (t) + Z

x̄,Ȳ
BA (t), (19)

YA(t) = 1

2
Z

x̄,Ȳ
O (t), (20)

YAB(t) = Z
x̄,Ȳ
A (t), (21)

and symmetric relations for A and BA variables. The set of all solutions Ȳ (t) of (19)–(21)
will be denoted by Y(x̄(0)).

It is well known that the set Y(x̄(0)) is not empty for any initial state x̄(0). We reproduce
here the proof, since analogous argument will be used throughout the paper.

Proposition 6 For any point x̄(0) there exists at least one trajectory of closed fluid network
evolution �, passing through it.

Proof It suffices to prove that a solution exists in any given bounded time interval [0, T ].
For a given x̄ = x̄(0), consider the map G : Ȳ (·) → Z̄x̄,Ȳ (·). It is clearly a continuous map
of C[0, T ] into itself. The outflow Z̄(·) is Lipschitz continuous (by Lemma 13 below), with
Lipschitz constant L independent of x̄(0) or Ȳ (·). Hence G takes the convex compact set of
L-Lipschitz continuous functions Ȳ (·) on [0, T ], satisfying Ȳ (0) = 0, into itself. Therefore,
by the Brouwer theorem, the map G has at least one fixed point. �

The system � has the following properties:

• The total amount of fluid |x̄(t)| = xO(t)+ xA(t)+ · · ·+ xB(t) is evidently conserved. We
will assume |x̄(t)| = 1.



Spontaneous Resonances and the Coherent States 85

• For some initial states x̄(0) the equations (19)–(21) have multiple solutions. This is true
for all initial conditions x̄(0), given by (10). The equations (19)–(21) have in this case
three solutions, so there are at least three dynamical systems, defined by x̄(0). The first
solution corresponds to the flow rates yAB = 10, yBA = 0, the other one is symmetric to
the first one: yBA = 10, yAB = 0, while the third one is given by the flow rates AB →
O,BA → O,A → AB,B → BA all equal to 10

6 , O → A, O → B equal to 3
2 . One can

say, having that property in mind, that at some points the uniqueness of the trajectory
breaks down, so it can happen that for two trajectories x̄ ′(t), x̄ ′′(t) we have x̄ ′(t) = x̄ ′′(t)
for t ≤ t0, but x̄ ′(t) �= x̄ ′′(t) for t > t0. That just means that there are two different (non-
autonomous) dynamical systems, which have trajectories, coinciding for t ≤ t0, but not
for t > t0.

• The curve x̄(t) ≡ {1,0,0,0,0} is a trajectory, i.e. the point ∗ = {1,0,0,0,0} is a fixed
point of �. Its flow rates are constant; their values are: yA = yB = yAB = yBA = 3

2 ,
yO = 3. Let us check that with these flow rates the amount of the fluids in Ā and B̄

will stay zero. Indeed, yA

γA
+ yBA

γBA
= 3/2

10 + 3/2
2 = 9

10 < 1. So our claim follows from the

Proposition 5. In fact, the nodes Ā and B̄ are even underloaded, which means that in the
long run each node gets on the average less fluid than its serving capacity is. Note also
that there are trajectories x̄(t) such that x̄(t) = ∗ for t ≤ t0, but x̄(t) �= ∗ for t > t0, with
any t0.

• There are (not necessarily uniqueness) points in (R5)+, from where (some) trajectory goes
to ∗. One such family is the set of points U = {x̄ : 0 < xA = xB < 1

2 , xAB = xBA = 0, xO =
1 − xA − xB}, and the flows are: AB → O,BA → O,A → AB,B → BA all equal to 10

6 ,
O → A, O → B equal to 3

2 . In fact, from every point in U two more trajectories start.
The values of the flow rates for one of them for small initial segment of time is given by:
yA = yB = 3

2 , yAB = 10, yBA = 0, yO = 2. It is describing the situation when the light
fluid A flows to the node B̄ , and the resulting heavy fluid AB in the node B̄ blocks the
fluid B in the node B̄ from exiting. The second solution is obtained by interchanging A

and B. There is a bigger set Ū ⊃ U , having dimension 2, starting from where one can
get to ∗, making on the way some choice of the trajectory; Ū = {x̄ : xA = xB, xAB =
xBA, xO = 1 − xA − xB − xAB − xBA}.

• There is a cycle C ⊂ (R5)+, such that if x̄(0) ∈ C , then x̄(t) ∈ C for all t > 0. For example,
the point {x̄ : xA = 1, xB = xAB = xBA = xO = 0} belongs to it. All the points of the
cycle C are uniqueness points. By TC we will denote the time to go around the cycle
C once. We will now describe, just applying the definitions in a straightforward way,
the cycle C , started from x̄(0) = {xA = 1, xB = xAB = xBA = xO = 0}. The first part of
it happens for t ∈ [0, 1

9 ], during which time the component xA(t) decays linearly from
the value 1 to 0. The component xB(t) grows linearly, and xB( 1

9 ) = 1
9 , the component

xAB(t) grows linearly, and xAB( 1
9 ) = 8

9 , while xBA and xO stay zero. On the next segment,
t ∈ [ 1

9 ,1], the component xAB(t) decays linearly, with rate 1, and so it vanishes at t = 1.

The component xB(t) continues to grow linearly, with the same speed, so xB(1) = 1.
Other three components remain empty. So at time 1 we find ourselves accomplishing one
half of the cycle. Therefore TC = 2.

• If x̄(0) /∈ Ū , then x̄(t) ∈ C once t ≥ T , where T = T (γO, γA, γB, γAB, γBA). We will
prove this claim under additional assumption that dist(x̄(0), C) ≡ infy∈C

∑
i |xi − yi | < ε

for some small ε, since this will be sufficient for our purposes.

Lemma 7 (Local attractor) There exists an ε > 0 such that for any initial point x̄(0) with
dist(x̄(0), C) < ε we have x̄(t) ∈ C once t > T = T (γO, γA, γB, γAB, γBA).
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Proof Since for every point c̄ on C we have either cAB = 0 or cBA = 0, we see that at least
one of the coordinates xAB(0) or xBA(0) has to be less than ε. Let us start with the case
that both of them are positive, and we can then assume that xAB(0) < ε, xBA(0) ≥ xAB(0).
Then for a short initial segment of time, [0, t1], both coordinates xAB(0) and xBA(0) decay
with the same constant rate 2, until xAB will vanish, which will happen at the moment
t1 = xAB(0)

2 < ε
2 . Also, for every point c̄ on C we have cO = 0. Therefore xO(0) < ε, hence

xO(t1) < ε + ε
2 = 3ε

2 , since the total arrival rate to Ō does not exceed 4, while its service rate
equals 3.

Now consider the case when xBA(t1) > 0. While xBA(t) keeps being positive, there is
no flow from Ā to B̄ and, as a result, no flow from B̄ to Ō . So if xBA(t) stays positive for
t ∈ [t1, t2 = t1 + xO(t1)], then xO(t) becomes 0 at t = t2—since it decays with rate 1 when
xAB = 0 and xBA > 0—and will stay 0 while xBA(t) is positive. The coordinate xAB(t) stays
zero as well. When finally xBA(t) vanishes for the first time, at t3 ≥ t2, the value xB(t3) has
to be already zero. Which means that xA(t3) = 1, so x̄(t3) ∈ C .

In the remaining case, the first point, t3, where the coordinate xBA(t) vanishes, belongs
to the segment [t1, t2 = t1 + xO(t1)]. (That case contains the situation when xBA(t1) = 0.)
Since the time t3 ≤ 2ε, and since initially the point x̄(0) was close to C , the same is true for
the point x̄(t3). Since xAB(t3) = xBA(t3) = 0, we conclude that one of the two coordinates—
either xA(t3), or xB(t3)—should be ε-close to 1, while the remaining one, as well as xO(t3),
should be ε-close to 0. Suppose xA(t3) ∼ 1. Note that the evolution of the point x̄(t3) is not
uniquely defined if both xA(t3) and xB(t3) are positive. As was explained above, there are,
in fact, three options to choose from:

(i) If the choice is that the fluid A “goes first”, then after a small time the coordinate xO

will vanish, and after the time of order 1
9 the coordinate xA will vanish as well, and we find

ourselves on C.

(ii) If the fluid B “goes first”, then after a small time (of order ε) first xB , and then xBA

will vanish, and the fluid xA—which is in the amount of order 1, will start to decay, so we
find ourselves in the situation just considered.

(iii) The remaining option is when both fluids A and B “go simultaneously” into, resp.,
AB and BA, at the rate 10

6 . As was explained above, the result will be that the levels of the
fluids A and B will decay with the rate 10

6 − 3
2 = 1

6 , while the level xO will be correspond-
ingly raising. But no later than the time 6ε the level xB will vanish, and since xAB and xBA

both were already zero, we again are in the situation considered above, with xO being of
order ε. In fact, at any time when the system is in phase (iii), it has three options: to pass
(forever!) to the phase (i) or (ii), or to stay in phase (iii). The above arguments in (i)–(iii)
stays valid in this case and we get the required assertion. �

Warning. Our analysis shows that the time T needed to reach the cycle does not vanish
with ε.

• Continuity. The above proof implies the following (weaker) substitute for the property of
the continuous dependence of the trajectory on the initial condition. Let x̄(0) and c̄(0)

be two initial points, and suppose that |x̄(0) − c̄(0)| < ε, and c̄(0) ∈ C. Then there ex-
ists a constant C, such that for any t and for any version of the x-trajectory we have
|x̄(t) − c̄(t)| < Cε. The condition c̄(0) ∈ C is, evidently, crucial; without it our statement
fails.

• The cycle C depends on γO,γA, γB, γAB, γBA, and is non-trivial for our choice of these
parameters. For some other values of γO,γA, γB, γAB, γBA it is reduced to the point ∗,
which then is a stable fixed point.
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• All the above properties of our system would still be valid if we perturb slightly the
vector γ̄ = {γO,γA, γB, γAB, γBA} of the parameters around the point {3,10,10,2,2t} of
our choice (even if the perturbation does not respect the symmetry γA = γB , γAB = γBA).

• Let x̄(t) ⊂ C be a cyclic trajectory. Let us denote by λ̄C(t) the corresponding (pe-
riodic) function of the inflows. The stability property just formulated implies im-
mediately that our system in the cyclic regime is underloaded. In other words, for
{γO,γA, γB, γAB, γBA} = {3,10,10,2,2} there exists δ > 0 such that we have

1

γO

∫ TC

0
λC

O (t) dt < (1 − δ)TC, (22)

1

γA

∫ TC

0
λC

A (t) dt + 1

γBA

∫ TC

0
λC

BA(t)dt < (1 − δ)TC, (23)

and the same relation for the B̄ node.

We now want to consider the “open” system �o, which is obtained from � by the follow-
ing construction: every exiting fluid now goes not to the corresponding node, but leaves the
system. On the other hand, there is some inflow, λ̄(t), entering the system from the outside.

For the future use we introduce now the following compact subset K ≡ K(γ̄ ) ⊂ (R5)+:

K =
{

x̄ ∈ (R5
)+ : max

{
1

2
xAB + 1

10
xB,

1

2
xBA + 1

10
xA,

1

3
xO

}

< 10

}

.

Lemma 8 Let the open system �o be in the state x̄(0) ∈ (R5)+. Consider the functional L

on R
5, given by

L(x̄) =
{0 if x̄ ∈ K,

max{ 1
2 xAB + 1

10xB, 1
2xBA + 1

10xA, 1
3xO} otherwise.

(24)

Suppose that L(x̄(0)) > 10. Then there exists a constant C > 0, such that for all external
flow rates {λ̄(t), t ∈ [0, TC]} which are close enough to {λ̄C(t), t ∈ [0, TC]} in the L1 distance,
we have

L(x̄ (0)) − L(x̄ (TC)) > C.

Proof For the case of the inflows with rates λ̄C(t) our statement follows from the underload
property, due to the relations (22)–(23). Therefore it holds for inflows that are close enough,
by continuity. �

4.3 M Coupled Fluid Networks

Let �M be the dynamical system on (R5M)+, obtained from M copies of �, interconnected
in the mean-field manner, as follows. Each node Ōi , i = 1, . . . ,M , is connected to all of the
nodes Āj , B̄j , j = 1, . . . ,M , and its fluid, of the amount xO,i , flows into the nodes Āj , B̄j

in equal amounts. The rate of each of these flows is now M−1 γO

2 = 3
2M

, which means, as
before, that three units of the fluid xO,i leave Ōi per unit time, so each of the set {Āj } and
{B̄j } gets 3

2 units of incoming fluids, A and B , per unit time. In a similar way, the fluid A

from every node Āi is splitted among all nodes {B̄j }, so the rate of every individual flow
Āi → B̄j is M−1γA = 10

M
, and so on. The priorities are kept the same: if the node Āi , say, is

in the state with both amounts xA,i and xBA,i positive, then the fluid BA goes first.
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Again, we first describe the open network, i.e. the Non-Homogeneous Dynamical Sys-
tem. We will not need the general case here; it is enough for us to consider the net inflow
defined by the same function Ȳ (t) ∈ (R5)+ as in the previous subsection; every node then
gets 1

M
-th part of the inflow, so, for example, for each i = 1, . . . ,M the net inflow function

of the node Ōi equals to 1
M

YO(t). Once we are also given the initial values x̄ ∈ (R5M)+ of

the fluid levels, the net outflows Z
x̄,Ȳ
a,i (t), a ∈ {O,A,B,AB,BA}, i = 1, . . . ,M , are defined

as above, see (18).
Passing to the closed system, instead of relations (19)–(21), we impose the relations

YO(t) =
M∑

i=1

(Z
x̄,Ȳ
AB,i (t) + Z

x̄,Ȳ
BA,i(t)), (25)

YA,j (t) =
M∑

i=1

1

2
Z

x̄,Ȳ
O,i (t), (26)

YAB,j (t) =
M∑

i=1

Z
x̄,Ȳ
A,i (t) . (27)

Again, all the functions Y∗(t) and Z∗(t) are Lipschitz continuous and, hence, differentiable
almost everywhere. These derivatives will be denoted, again, by y∗(t) and z∗(t). For each
node (say, Āi ) of �M , the evolution of the amount of fluids xA,i(t) and xBA,i(t) is found
from the corresponding inflows 1

M
YA(t) and 1

M
YBA(t) and initial states xA,i(0) and xBA,i(0)

in the same manner as for the network �.
We will consider trajectories x̄M(t) ∈ (R5M)+ with |x̄M(t)| = M , i.e. we have the unit

amount of fluid per elementary system � ⊂ �M.

For every M we will define now another dynamical system, acting on (R5)+. This one,
also denoted by �M , will be of central importance for the present paper. However, it will
be not the usual dynamical system. It will be defined not as a group of transformations of
(R5)+, but directly on the (sub)set MM of some atomic probability measures on (R5)+. This
transformation will not be linear on M, and for that reason we will call it non-linear dynam-
ical system. In fact, it is just a convenient representation of our initial dynamical system on
(R5M)+, suitable for passing to the limit M → ∞. The construction is very simple:

To every point x̄M = {(xi
O, xi

Ā
= (xi

A, xi
BA), xi

B̄
= (xi

B, xi
AB)), i = 1, . . . ,M} ∈ (R5M)+

we can assign a probability measure on (R5)+ in the following way: we put μO =
1
M

∑M

i=1 δxi
O

, μĀ = 1
M

∑M

i=1 δxi
Ā

, μB̄ = 1
M

∑M

i=1 δxi
B̄

, and we define μ ≡ μx̄M = μO × μĀ ×
μB̄ ∈ MM. Now, if the point x̄M evolves according to �M , so is the measure μ; moreover,
the evolution μ(t) of μ is well defined and does not depend on the choice of the preimage,
so if μ

x̄
M1
1

= μ
x̄
M2
2

, then μ
x̄
M1
1

(t) = μ
x̄
M2
2

(t).

The set of measures MM on (R5)+consists of all measures μ, having the properties

1. μ is a product,

μ ≡ (
μO,μĀ,μB̄

)≡ μO × μĀ × μB̄ ≡ 
ō [μ] × 
Ā [μ] × 
B̄ [μ] , (28)

of probability measures on R
1 = {xO}, resp. R

2 = {xA, xBA} and R
2 = {xB, xAB}. Here

we denote by 
∗-s the various projections (or marginals),
2. we have

∫ |x̄|dμ = ∫
xOdμO + ∫

(xA + xBA)dμĀ + ∫
(xB + xAB)dμB̄ = 1,
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3. we have μO = 1
M

∑M

i=1 δx̄i
for some (not necessarily distinct) x̄i ∈ R

1, i = 1, . . . ,M ,

likewise μĀ = 1
M

∑M

i=1 δx̄′
i
, μB̄ = 1

M

∑M

i=1 δx̄′′
i
, x̄ ′

i , x̄
′′
i ∈ R

2.

Properties of �M :

• The set of the fixed points of �M consists of measures μ = 
ō[μ] × δxĀ=0 × δxB̄=0,
where δxĀ=0 and δxB̄=0 are unit atoms at the origin, while 
ō[μ] is the projection on the
coordinate xO. In words, that means that all the fluid stays permanently in the O-nodes
(in arbitrary amounts, adding up to M). This fact follows from Proposition 5.

• If μ(0) = δx̄ ∈ MM , then μ(t) = δx̄(t), where x̄(t) is the trajectory of � with x̄(0) = x̄. In
particular if x̄ ∈ C , then x̄(t) ∈ C .

• Note that the dynamics �M on MM is “non-linear”, in the sense that in general in the
situation when μ(0) = αμ′(0) + (1 − α)μ′′(0), μ(0),μ′(0),μ′′(0) ∈ MM , 0 < α < 1, we
have μ(t) �= αμ′(t) + (1 − α)μ′′(t) for t > 0. (There is nothing strange or unusual in this
relation, since the dynamical system in question is itself defined on the space of measures
as its state space, and not on the (R5)+.)

• Let ρKROV be the Kantorovich-Rubinstein-Ornstein-Vaserstein distance on the probabil-
ity measures on (R5)+, corresponding to the metric ρ(x̄, ȳ) =∑5

i=1 |xi − yi | on (R5)+.
(We recall briefly, that if μ, μ′ are two probability measures on a metric space (X,ρ),
then ρKROV(μ,μ′) = infκ

∫
ρ(x, x ′)dκ(x, x ′), where the inf is taken over all probability

measures κ on X × X, such that κ(A × X) = μ(A), κ(X × A) = μ′(A). Suppose that the
initial measure μ(0) is close enough to the cycle C , which means that for some x ∈ C we
have

ρKROV (μ (0) , δx) < ε. (29)

Let Y (t) ∈ Y(μ(0)) be one of the possible net inflows, corresponding to the initial
state μ(0), and μ(t) be the corresponding evolution. Then there exists the time T =
T (M,γO,γA, γB, γAB, γBA), such that for all t ≥ T we have μ(t) = δx̄(t) with x̄(t) ∈ C .
Moreover, let us define the compact �K by

�K = {x̄ = (xO, xA, . . . , xB) : xO < K,xA < K, . . . , xB < K} ,

and let μ|K(t) be the evolution of the restriction μ(0)|K under the same evolution, defined
by the flow rates Y (t) ∈ Y(μ(0)). (Once the inflows Y (t) are fixed, the evolution becomes
the usual (non-autonomous) linear dynamical system, so we can apply the dynamics to
the summand μ(0)|K of the measure μ(0).) We choose K to be large enough, so that from
ρKROV(μ(0), δx) < ε for some x ∈ C it follows that

μ(0) [K] > 1 − ε. (30)

We now claim the following:

Lemma 9 Under conditions (29) and (30), there exists the time moment T ′ = T ′(K,γO,

γA, γB, γAB, γBA), such that for every t ≥ T ′ (uniformly in M!) there exists a point x̄(t),
such that μ|K(t) is just the atom at that point: μ|K(t) = cδx̄(t). Moreover, dist(x̄(t), C) < c̃,
and c = μ(0)[K] → 1 while c̃ → 0 as K → ∞.

Notes

• We will prove only the statement about the existence of the time moment T ′, since below
we will not use the time moment T (M,γO,γA, γB, γAB, γBA).

• Our proof can be extended literally to the case M = ∞ of the next subsection.



90 A. Rybko et al.

Proof Note first that due to the mean-field nature of our graph, the flows to all the Ā-nodes
are equal at every time moment (as well as to all the B̄-nodes or Ō-nodes). Consider now
any subset Q of the Ā-nodes, |Q| ≤ M , and let IBA be the index, for which (xBA)IBA

(0) ≥
(xBA)i(0) for all i ∈ Q. Then, clearly, this relation holds at later moments, i.e. (xBA)IBA

(t) ≥
(xBA)i(t). In the same way, define the index IA as the one, for which (xA)IA(0) ≥ (xA)i(0).
Then, if all the variables (xBA)i(0) are equal for i ∈ Q, the relation (xA)IA(t) ≥ (xA)i(t)

holds at all later moments. We will use this property for the set Q = {i} of indices, which
satisfy (xBA)i(0) < K , (xA)i(0) < K .

Let us show that there exists the time moment, such that before it every node in Q will
be empty for some time duration. In view of what was said before, it means that after that
time moment all the nodes in Q will be synchronized. To see this depletion, note that the
initial supply of the fluid BA at any node i ∈ Q is not exceeding K , so it will be over before
t ′ = K

2 . Next, there exists a moment t ′′, after which 99
100 (say) of “atoms” of the heavy fluid

BA, passing through our node i ∈ Q were at earlier moments at some Ō-node. Indeed,
another option would be that such an atom was staying at some B̄ node for all the time
duration t ′′. That means that the initial total amount of fluid at this node was very high,
once t ′′ is chosen to be large. However, the proportion of such nodes has to be small, due
to the simple fact that the total amount of fluid per node is of the order of one. But the rate,
at which the fluid goes from the Ō node to the B̄ node is never higher than 3

2 . Let K ′′ be
the amount of fluid at our node i at the moment t ′′. Clearly it is at most 12t ′′. Suppose the
node is not empty during the time interval [t ′′, t ′′ + T ]. Than it works all the time at full
capacity. Let 0 ≤ k(t) ≤ 1 be the fraction at moment t of the capacity of the node, used
by the heavy fluid, while the remaining fraction 1 − k(t) is used by the light fluid. Then

the amount of heavy fluid, which left the server during this time interval, is 2
∫ t ′′+T

t ′′ k(t)dt ,

while the corresponding amount of the light fluid is 10
∫ t ′′+T

t ′′ (1 − k(t))dt. Since the light
fluid flows into the node with the rate at most 3

2 , we have that the relation

10
∫ t ′′+T

t ′′
(1 − k(t)) dt ≤ 3

2
T + K ′′

has to hold, since the amount of light fluid, leaving the node, can not exceed the initial
amount present at the node plus the amount which came to the node during the time inter-
val T . For the heavy fluid we similarly have

2
∫ t ′′+T

t ′′
k(t)dt ≤ 3

2
T + 10

(
1

100
T

)

+ K ′′.

The two relations imply that

10T ≤
(

9
1

2

)

T + 6K ′′.

So T ≤ 12K ′′, which establishes our depletion claim for the Ā (as well as for B̄) nodes at
some moment t ′′′, independent of M and ε, provided only that ε is small.

Thus far we were not using the condition ρKROV(μ(0), δx) < ε, without which our claim
about the existence of the time moment T ′(K,γO, γA, γB, γAB, γBA) is not valid—see,
for example, the first property of the dynamics �M . We will use it now, in dealing with
the Ō nodes. Due to the above discussion and the continuity property, our statement is
reduced to the following one: consider the initial measure μ(0), having the properties:
ρKROV(μ(0), δx̄) < ε′ (= Cε, see Continuity Property of the previous section), while in
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the decomposition μ(0) = μ(0)Ō × μ(0)Ā × μ(0)B̄ we have μ(0)Ā = (1 − ε)δx̃Ā
+ κĀ,

μ(0)B̄ = (1 − ε)δx̃B̄
+ κB̄ , with the vectors x̃Ā, x̃B̄ ∈ R

2 close to the corresponding projec-
tions (xA, xBA), resp. (xB, xAB) of the vector x̄. But that means that the flows into the Ō

nodes will be almost always almost equal to these on the cycle C , so in finite time all of the
Ō-nodes which initially have their levels ≤ K will become empty. Indeed, on the cycle the
flow to the Ō node has rate 2, while the capacity of these nodes equals 3.

Summarizing, we have thus far that after a finite time, independent of M , all the nodes in
Q are synchronized, and moreover all the Ō-nodes in Q are empty. The application of the
Continuity Property and the Attraction Lemma 7 finishes the proof. �

4.4 M → ∞ Fluid Network

This is again a dynamical system, �∞, acting on probability measures M = M((R5)+) on
(R5)+. One way of defining it is to say that the family μ(t) ∈ M is a trajectory of �∞, iff for
any M there is a trajectory μM(t) ∈ MM of �M , so that for every t we have μM(t) → μ(t)

weakly.
Now we will give another description of �∞, which does not make use of the limit

M → ∞. As was the case with the dynamics � and �M , we will define first the NHDS
version of �∞. Let the measure μ0 ∈ M((R5)+) and let the function Ȳ (t) ∈ (R5)+ be
given, which is the net inflow of our fluids. Then the corresponding evolution μ = {μt ∈
M((R5)+)} of the state μ0 is defined to be just the evolution of the measure μ0 under the
dynamics �(Ȳ ). Again, the net outflows Z̄x̄,Ȳ (t), x̄ ∈ (R5)+ are given by (18).

Now we can define the evolution μ = {μt ∈ M((R5)+)} of the initial measure μ0 un-
der Non-Linear Dynamical System �∞ (NLDS) as the NHDS evolution of it under any
dynamics �(Ȳ ), with Ȳ satisfying the equations:

YO(t) =
∫

(Z
x̄,Ȳ
AB (t) + Z

x̄,Ȳ
BA (t))dμ0 (x̄) ,

YA(t) = 1

2

∫
Z

x̄,Ȳ
O (t) dμ0 (x̄) , (31)

YAB(t) =
∫

Z
x̄,Ȳ
A (t)dμ0 (x̄) ,

and symmetric relations for B and BA variables. The set of all such flows Ȳ (t) will be
denoted by Y(μ0).

We are calling the dynamical system �∞ non-linear, since in general we will have for
μ0 = 1

2 (μ′
0 + μ′′

0) that μt �= 1
2 (μ′

t + μ′′
t ) when t > 0. Note also that if μ0 = δx̄(0) for some

point x̄(0), then the family μt is a �∞ trajectory iff μt = δx̄(t), with x̄(t) being some �-
evolution of x̄(0).

Properties of �∞:

1. the set of the fixed points of �∞ consists of measures μ = 
ō[μ]× δxĀ=0 × δxB̄=0, where

ō[μ] is the projection on the coordinate xO.

2. if μ(0) ∈ MM for some M , then the �M -dynamics and �∞-dynamics with that initial
data coincide. In particular, if μ(0) = δx̄ ∈ M with x̄ ∈ C , then μ(t) = δx̄(t), where x̄(t)

is the trajectory of � with x̄(0) = x̄.

For all our purposes it is sufficient to prove the following property of our NLDS.

Proposition 10 Let the measure μ = μ(0) on (R5)+ have the following properties:
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(i) Unit mass:
∫

(R5)+
(xA + xB + xBA + xAB + xO)dμ = 1, (32)

(ii) Exponential moment condition: for some α > 0, A < ∞ we have

〈exp {αL(x̄)}〉μ(0) < 3A (33)

(see (24)),
(iii) For some x ∈ C we have

ρKROV (μ (0) , δx) < ε, (34)

with ε small enough (depending on α and A).

Consider now some Non-Linear Dynamical System �∞ (NLDS), defined by the initial
state μ(0). In other words, �∞ = �∞(Ȳ (·)), for some Ȳ (·) ∈ Y(μ(0)). Then for t → ∞ the
evolving measure μ(t) satisfies:

(I)

ρKROV

(
μ(t), δz(t)

)→ 0 (35)

for appropriate z(t) ∈ C ,
(II)

〈exp {αL(x̄)}〉μ(t) → 0. (36)

Moreover, the convergence in (35), (36) is uniform over all Ȳ (·) ∈ Y(μ(0)) and all initial
measures μ(0) satisfying (32)–(34).

To establish it we first prove the following simpler fact.

Proposition 11 For every T , ε there exists a value ε̄(T , ε), such that the following holds:

(i) For every T we have ε̄(T , ε) → 0 as ε → 0.

(ii) Let μ be any measure satisfying (i)–(iii) above. Then for every t ∈ [0, T ] we have
ρKROV(μ(t), δx(t)) < ε̄(T , ε).

Proof Let the sequence of measures μn(0) converge to δx in the KROV metrics, and let it
satisfy the conditions of the Proposition 10. Let us consider the set of trajectories μn(t),
0 ≤ t ≤ T . The family of these trajectories, viewed as functions of t ∈ [0, T ], is a family
of uniformly bounded functions (due to the compactness of the set of measures with the
properties (i)–(iii)), which also are equicontinuous. Indeed, every version of the vector field,
along which any of the measures μn(t) has to evolve, is continuous and bounded in norm
by the constant γA = 10. Therefore it is compact, and so has a limit point, the function μ(t),
with μ(0) = δx. But μ(t) has to be a trajectory of NLDS, and since there is just one such
trajectory starting from δx , we conclude that μ(t) = δx(t).

Therefore μn(t) → δx(t) for every t ∈ [0, T ], and this convergence is uniform in t. The
existence of the function ε̄(T , ε) follows from the compactness of the balls {μ : ρKROV(μ, δx)

< a} of measures satisfying the moment condition. �



Spontaneous Resonances and the Coherent States 93

Proof of the Proposition 10 1. To begin with, we prove that once ε is small enough, there
exists the time moment T1, at which for any initial μ(0), satisfying conditions of our propo-
sition,

〈exp {αL(x̄)}〉μ(T1) < ε. (37)

Indeed, suppose first that the value of the exponential moment of the initial measure μ̃(0) is
fixed, 〈exp{αL(x̄)}〉μ̃(0) = M , and also that

ρKROV

(
μ̃(t), δz(t)

)
< ε̃ for all t ∈ [0, TC ] , with ε̃ small enough, (38)

where TC is the time it takes to go once around the cycle C. We claim that at the moment TC
we have 〈exp{αL(x̄)}〉μ̃(TC ) < cM , where c < 1 is some constant, which depends only on
the parameters of our model. In particular, c is independent of μ̃(0).

To see that we note first that for any point x̄0 with L(x̄0) > 10 (see definition (24)) and
under Cyclic Dynamics �∞ = �∞(Ȳ (·)), for Ȳ (·) ∈ Y(δz), z ∈ C , we have after the time
shift by TC that L(x̄TC ) < L(x̄0)−C(γ∗), where the constant C(γ∗) > 0 depends only on the
service rates γ∗. This follows directly from Lemma 8 of Sect. 4.2. From the same lemma and
due to the condition (38) we have that under any dynamics �∞(Ȳ (·)) with Ȳ (·) ∈ Y(μ̃(0))

we have for the same point that L(x̄TC ) < L(x̄0) − 1
2C(γ∗). So we have proven our claim,

with c = exp{− 1
2C(γ∗)}.

Let now k be the smallest integer, such that 3Ack < ε. We want to repeat k times the pro-
cedure of the previous paragraph. Its duration is, evidently, kTC . Suppose that the parameter
ε is so small that the function ε̄(kTC, ε), defined in Proposition 11 satisfies ε̄(kTC, ε) < ε̃

(see (38)). Then the desired repetition is possible, and so (37) indeed holds, with T1 = kTC.

2. Summarizing, at the moment T1 we have:
(i)

〈exp {αL(x̄)}〉μ(T1) < ε, (39)

(ii) ρKROV(μ(T1), δz) < ε̄(T1, ε) for some z ∈ C.

Let us use now the compact K. From (39) immediately follows that μ(T1)[K] > 1 − ε.

Hence, due to Lemma 9 of Sect. 4.3, there is the time moment T2 = T2(K, ε), after which
the restricted measure μ(T1)|K would evolve under the dynamics �∞(Ȳ (·)) with Ȳ (·) ∈
Y(μ(0)) to a δ-atom, of mass at least 1 − ε. According to Lemma 11—or rather its M = ∞
version—for some z ∈ C the distance ρKROV(μ(T1 + T2), δzt) at that moment would be at
most ε̄(T2, ε̄(T1, ε)), which is small. If it would have been the case that this atom has unit
mass, than after time TC it would already be on the cycle C. Since, however, we know only
that its mass is above 1 − ε, we can claim that at the time moment T1 + T2 + TC its distance
from C is at most K1ε, where K1 is some universal constant. Therefore for the total measure
μ(T1 + T2 + TC) we can claim that

(ii′) ρKROV(μ(T1 + T2 + TC), δz) < K2ε for some z ∈ C and some universal K2, while
(i′) 〈exp{αL(x̄)}〉μ(T1+T2+TC ) < cε, with c < 1 the same as in the first step of the proof.
So what happened is that the estimator ε of the exponential moment, appearing in (39),

multiplied by K2, is the estimator of the KROV distance on the next step, while the estimate
of the exponential moment is improved by a constant c. This argument can be iterated; on
the next step we will have

(i′′) 〈exp{αL(x̄)}〉μ(T1+2(T2+TC )) < c2ε,
(ii′′) ρKROV(μ(T1 + 2(T2 + TC)), δz) < K2cε for some z ∈ C , and so on, which completes

the proof. �
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5 Euler Scaling Limit of the NLMP

In this section we will show that in the limit of high load our Non-Linear Markov process
tends to the fluid model, introduced above.

Theorem 12 Suppose that for every N we are given the initial state νN of the (scaled—
see (1)) NLMP ∇N∞, and the sequence νN converges to the measure μ in the KROV metric,
i.e. ρKROV(νN ,μ) → 0. Consider all the KROV-limit points μ(t) of the set of trajectories
{ν̃N (t) = νN(Nt), t ∈ [0, T ]}, N = 1,2, . . . . Every such limit point, called Euler fluid limit
of the NLMP, is necessarily a trajectory of the fluid model �∞.

(Any trajectory of �∞, obtained via this limit, will be called a fluid solution.)

Note As was mentioned above, the system �∞ does not possess the uniqueness prop-
erty. The uniqueness property for the subclass of the trajectories of �∞—the fluid solution
trajectories—does not hold as well. That means that the above set of all limit trajectories
μ(t) might contain more than one element, and so the trajectory μνN (t), which satisfies
μνN (0) = μ, does depend on the sequence νN → μ.

Proof 1. We start by considering the open system. Then we can consider every node sepa-
rately. Let us take the node Ā, say. In the open system case its evolution is defined by pre-
scribing the initial state, νN

Ā
—the distribution of the quantity qĀ(0) ∈ R

2, which is the initial
queue, scaled by the factor 1

N
—together with the rate function λN

Ā
(t) ≡ {λN

A (t), λN
BA(t)} ∈

R
2, t ≥ 0, which defines the Poisson flows of incoming clients. For our applications it is

enough to consider the case when all our rate functions λ-s are uniformly bounded:

λN
∗ (∗) ≤ CN, (40)

since this is definitely the case for our closed system. The service times of the clients are
exponential, with respective rates NγA, NγBA (this scaling is due to the Euler limit we are
going to study). As above, the BA clients have priority. That means that if, while a user
of class A is being served, a class BA user arrives, the service of A user is interrupted
until the moment when there will be no BA users in queue (the preemptive priority service
discipline).

For the future use we will introduce the functions

�N
i (t) = 1

N

∫ t

0
λN

i (s)ds, i = A,BA,

which together form a 2D vector �N(t). We will also denote by NqN

Ā
(t) ∈ R

2 the pair of
queues at the moment t. By NQN

i (t), i = A,BA we denote the number of clients which
have arrived to the server Ā during the time interval [0, t]. We can as well assume that
to every client the service time is assigned at the moment of its arrival. The sum of these
required service times for clients arrived during the time interval [0, t] will be denoted by
NWN

i (t); this function has a stair-like graph. By NwN
i (t) we denote the remaining required

times for clients queuing or being served at the moment t; the graph of these functions are
saw-like.

We also consider the fluid model at this node. So qĀ(t) will denote the evolution of the
initial measure qĀ(0) on R

2 under fluid dynamics governed by the inflow with rate λĀ(t). By
Qi(t) = �i(t) we denote the amounts of fluid arriving to our node during the time interval
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[0, t]. Again, the fluid BA has priority over the fluid A, that is, it goes out first at rate γ1

whenever present.
Our goal is to prove convergence to the fluid limit. Let us assume that the scaled inflows

and initial states of the node converge to those of the fluid model as N → ∞, that is

lim
N→∞

sup
t∈[0,T ]

‖�N(t) − �(t)‖ = 0 (41)

and

lim
N→∞

ρKROV

(
qN(0), q(0)

)= 0. (42)

In what follows, we will need the following three bounds. The first one is the statement
that the process WN(t) is very close to the function γ −1�N(t)—namely,

lim
N→∞

E

(

sup
t∈[0,T ]

‖WN(t) − γ −1�N(t)‖
)

= 0. (43)

A simpler claim concerns the sum NwN(0) of the service times of all the users present in
the queue NqN(0) at the initial moment t = 0. Namely, for the conditional distribution of
wN(0) under the condition qN(0) = q we have

E
∥
∥
(
wN(0)

∣
∣ qN(0) = q

)− γ −1q
∥
∥≤ ψ(N)‖q‖ (44)

for some ψ(N) → 0 as N → ∞. Moreover,

sup
t∈[0,T ]

ρKROV

(
wN(t), γ −1qN(t)

)≤ ψ(N) sup
t∈[0,T ]

ρKROV

(
qN(t),0

)
. (45)

Of course, for every fixed t the convergence in (43) follows from the Central Limit The-
orem. The problem is that we need the convergence at all moments t . We will obtain (43) by
constructing the finite-point event, which contain the one we are interested. Indeed, consider
the event E(t0, c), c > 0, which consists of all trajectories such that

WN
A (t0) > γ −1

A

(
�N

A (t0) + c
)
. (46)

Note that the function �N
A(t) has its derivative ≤ C (see (40), so if the event E(t0, c) hap-

pens, then all the events E(t0 + τ, c − Cτ) happen as well, since the function WN
A (t) is

non-decreasing on every trajectory. Therefore we can replace the infinite union by the finite
one:

⋃

0≤t0≤T

E (t0, c) ⊂
2CT/c⋃

k=0

E
(
k

c

2C
,
c

2

)
,

and use the fact that for any fixed t ≤ T and c the probability of the event E(t, c
2 ) is ex-

ponentially small in N. The remaining cases (corresponding to the second coordinate, AB ,
and to the lower estimate in (46)) are immediate.

The proof of (45) proceeds in a similar way. First of all, there is a natural coupling
between the processes wN(t) and qN(t), corresponding to the fact that we can assume that
the service time of every client is known at its arrival moment. Consider the event E′(t0, c),
consisting of the trajectories where

wN
A (t0) ≥ γ −1

A

(
qN

A (t0) + c
)
.
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We would like to use the argument similar to the above, saying that if the bad event E′(t0, c)
happens at t0, then on a whole segment around t0 something unlikely has to happen as well.
Partially it can be done, since for every trajectory we have wN

A (t0 + τ) ≥ wN
A (t0) − τ , and so

we have for every trajectory in E′(t0, c) that wN
A (t0 + τ) ≥ γ −1

A (qN
A (t0)+ c−γAτ). If we can

claim that qN
A (t0) + c − γAτ > qN

A (t0 + τ) + c/2 for all τ small enough, then we would be
done. However, the outcome that qN

A (t0 +τ) > qN
A (t0)+c/2−γAτ is not excluded, even if τ

is very small. Yet, the probability of the increase of the queue by c/2 − γAτ during the time
τ is exponentially small in τ as τ → 0. Therefore, the event

⋃
0≤t0≤T E′(t0, c) is contained

in the union [⋃2C′T/c

k=0 E′(k c
2C′ ,

c
2 )] ∪ [⋃2C′T/c

k=0 E′′(k c
2C′ ,

c
4 )] for some suitably chosen C ′,

where E′′(k c
2C′ ,

c
4 ) is the event that on the segment [k c

2C′ , (k+1) c
2C′ ] the increment qN

A ((k+
1) c

2C′ ) − qN
A (k c

2C′ ) > c/4, and we are done.
From (41) and (43), we get

lim
N→∞

E

(

sup
t∈[0,T ]

∥
∥WN(t) − γ −1�(t)

∥
∥
)

= 0. (47)

Note that

ρKROV

(
wN(0), γ −1q(0)

) ≤ E
(
E
∥
∥(wN(0)

∣
∣ qN(0) = q

)− γ −1q
∥
∥)

+ ρKROV

(
γ −1qN(0), γ −1q(0)

)
.

(Here we treat wN(0) in the l.h.s. as the probability distribution.) So we get from (42) and
(44) that

ρKROV

(
wN(0), γ −1q(0)

)≤ ϕ(N)ρKROV (q(0), δ0) , (48)

where ϕ(N) → 0 as N → ∞, and 0 ∈R
2 is the origin.

Next, we need the following estimate (see for instance [9]):

Lemma 13 Let �(t) and �′(t) be two inflows to the fluid priority node with initial (non-
random) fluid levels q(0) and q ′(0). Then

sup
t∈[0,T ]

‖q(t) − q ′(t)‖ ≤ L(‖q(0) − q ′(0)‖ + sup
t∈[0,T ]

‖�(t) − �′(t)‖),

where L = L(γ1, γ2).

Proof Let us consider a fluid single-class node with variable capacity. Namely, let q1(0) be
the (scalar) initial fluid level, let �1(t) be the inflow, and introduce S1(t) to be the server
capacity, which is the amount of work the server can do during the time interval [0, t]. (For
example, in our situation S1(t) = γ1t , but we will consider more general case, with S1(t) not
necessarily linear.) Introduce the virtual level

V (t) = q1(0) + �1(t) − S1(t) (49)

and the unused service capacity

U(t) = max
{

0,− inf
s∈[0,t]

V (s)
}
. (50)

Then

q1(t) = V (t) + U(t), t ≥ 0. (51)
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Let us introduce the sup norm on the space of functions. Then the functionals {q1(0), �1(·),
S1(·)} → V (·) and {V (·),U(·)} → q1(·), given by (49) and (51), have finite norms, since
they are linear. The non-linear functional V (·) → U(·), given by (50), has finite norm as
well. Indeed, the functional V (·) → inf[0,·] V (·) has norm ≤ 1, since for any pair x(·), y(·)
of scalar functions

∣
∣
∣
∣ inf
s∈[0,t]

x(s) − inf
s∈[0,t]

y(s)

∣
∣
∣
∣≤ sup

s∈[0,t]
|x(s) − y(s)|,

and so

sup
t∈[0,T ]

∣
∣
∣
∣ inf
s∈[0,t]

x(s) − inf
s∈[0,t]

y(s)

∣
∣
∣
∣≤ sup

t∈[0,T ]
|x(t) − y(t)|;

the same holds for the functional {x(t)} → max{0, x(t)}, since

sup
t∈[0,T ]

|max{0, x(t)} − max{0, y(t)}| ≤ sup
t∈[0,T ]

|x(t) − y(t)|.

Therefore the composed functional, taking the triplet {q1(0), �1(·), S1(·)} to the pair {q1(·),
U(·)}, defined by (49)–(51), has finite norm.

That proves the desired statement for the first component of q. Now, to finish the proof,
we note that the capacity of the server for the users of the second class is given by S2(t) =
γ2U(t), where U(t) is the unused server capacity for the high-priority class (with S1(t) =
γ1t , t ≥ 0). Then we repeat the argument above. �

Next we formulate as a separate statement the obvious remark that the evolution of the
current remaining service time variable, w(t), coincides with the evolution of the level of
some evidently constructed fluid system.

Lemma 14 Let users uj of two possible types i = A,BA, with service times h
j

i arrive at
the initially empty server at times t

j

i , j = 1,2, . . . , and let wi(t) be the evolution of the
remaining service times. Consider also the fluid model with two classes of fluids, which
starts in the empty state and is governed by the fluid inflows

�i(t) = γi

∑

j :tj
i
≤t

h
j

i .

(I.e., our fluids have “viscosities” γ −1
1 and γ −1

2 .) Then at every moment t ≥ 0 the current
levels of fluids at the server equal to γiwi(t), i = 1,2.

Another auxiliary result is needed:

Lemma 15 Let q ∈ R
2 be (random) queue to our server, and w be the corresponding (ran-

dom) amount of total work (=service time needed). The service times of the users are in-
dependent, and within the i-th class identically distributed with mean γ −1

i . Then, for any
v ∈ R

2,

ρKROV

(
γ −1q, δv

)≤ ρKROV (w, δv) . (52)
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Proof Since the norm ‖ · ‖ is convex, we have for the conditional random variable w|q = q̄

that ‖γ −1q̄ − v‖ ≤ E‖(w|q = q̄) − v‖. Averaging over q̄ gives (52). �

Now, we derive the following result

Proposition 16 Under the assumptions made above,

lim
N→∞

sup
t∈[0,T ]

ρKROV

(
qN(t), q(t)

)= 0. (53)

Proof First,

sup
t∈[0,T ]

ρKROV

(
qN(t), q(t)

)≤ max{γ1, γ2} sup
t∈[0,T ]

ρKROV

(
γ −1qN(t), γ −1q(t)

)
.

Then we write a chain of inequalities. First of all we have

sup
t∈[0,T ]

ρKROV

(
γ −1qN(t), γ −1q(t)

)

≤ sup
t∈[0,T ]

ρKROV

(
wN(t), γ −1qN(t)

)+ sup
t∈[0,T ]

ρKROV

(
wN(t), γ −1q(t)

)
,

and the first summand can be bounded by (45). To estimate the distance ρKROV(wN(t),

γ −1q(t)) we have to exhibit some joint distribution of γ −1q(t) and wN(t). We take the
following one: first, we choose the coupling between γ −1q(0) and wN(0), using (44) and
(42), getting

ρKROV

(
wN(0), γ −1q(0)

)≤ 2ψ(N)ρKROV (q(0),0) .

Given the joint realization of the initial values (γ −1q(0),wN(0)), the evolution of the coor-
dinate q(t) is deterministic, defined by the flows �Ā(t) of the arriving fluids. The evolution
wN(t) is stochastic, governed by the Poisson process with net rates �N

i (t). Therefore for
every t we have to exhibit the coupling between the distribution of the vector wN(t) and
deterministic value q(t). The resulting KROV distance is precisely what the Lemmas 13 and
14 allow us to control:

ρKROV

(
wN(t), γ −1q(t)

∣
∣wN(0), q(0)

)

≡ E
(∥∥wN(t) − γ −1q(t)

∥
∥
∣
∣wN(0), q(0)

)

≤ L

(

‖wN(0) − γ −1q(0)‖ + E

(

sup
s∈[0,t]

‖WN(s) − γ −1�(s)‖
))

.

It remains to apply bounds (47) and (48) and deduce (53). �

2. The proof of our statement for the closed system does not require any extra arguments,
since the closed system is a special case of the open system, where all the flows satisfy the
relations defining the closed system. �

6 Main Result

In this section we finally formulate and prove our main theorem, which claims that the
NLMP started from some special initial state behaves similarly to the fluid model in its
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periodic regime, at all times t ∈ (0,∞). Since we know already that the NLMP is in turn a
limit of networks of size M , as M → ∞, our theorem implies that the large size (M � 1)

Markov process ∇N
M behaves similarly to the fluid model for a very long time, which time

diverges as M → ∞, provided the number N of clients per node exceeds some value N0. In
particular, there are initial states for the networks ∇N

M , which lead to a long time oscillations,
before the network reaches its stationary state.

Theorem 17 Let ε > 0. Then there exist the values N0, ε′ > 0, α > 0 and E < ∞ such that
for all N > N0 the states νN(t) of the NLMP process ∇N∞, started at the initial state νN(0)

with the properties:

ρKROV

(
νN (0) , δx(0)

)
< ε′,

with x(0) ∈ C ,

〈exp {αL(x̄)}〉νN (0) < E,

satisfies for all t > 0

ρKROV(νN(t), δxν ) < ε, (54)

where xν ∈ C is some moving point, depending on the process ν ={νN(t), t ≥ 0}. In partic-
ular, the process νN(t) has no limit as t → ∞.

In words, we are proving that if we start the NLMP with high load N per server, from
the state close to some atomic measure δz with z belonging to the cycle, then it never goes
to a limit.

For that, we need a general lemma, which is formulated in the Euler scaling. First, we
recall the definitions. Let λ̄(t) = {λi(t), i = 1, . . . , k} be the rates of Poisson inflows of the
customers of k types, and γi , i = 1, . . . , k be their rates of service. The discipline of service
will be irrelevant here; we need only that the server is not idle if the queue is not empty. We
call the flow λ̄(t) to be underloaded, with parameters (T , δ), if for any t

k∑

i=1

1

γi

∫ t+T

t

λi(t)dt < (1 − δ)T .

Below we are talking about the flow with load N. That means that we consider the situation
when the input rates are given by Nλ̄(t) = {Nλi(t), i = 1, . . . , k}, while the service rates are
equal to Nγi.

Lemma 18 Consider the Non-Homogeneous Markov Process μ(t), started from the initial
state μ(0), and suppose that its generating rate function λ̄(t) is underloaded, with parame-
ters (T , δ). Then there exist values α > 0 and A < ∞, depending only on the pair (T , δ),
such that if the exponential moment 〈exp{αL(x̄)}〉μ(0) of the initial state is finite, then for
times t > t (μ(0)) and for any load N

〈exp {αL(x̄)}〉μ(t) < A.

Moreover, there exists the time T = T (T , δ), such that for any initial state μ(0), satisfying
the estimate

〈exp {αL(x̄)}〉μ(0) < 3A,
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we have, for any load N , that

〈exp {αL(x̄)}〉μ(T ) < 2A.

Proof We consider Poisson inflow with a general distribution η of the service time, having
finite exponential moment. In particular, exponential service time fits.

The users arrive to the node according to the Poisson processes with rates λi(t). Their
service times are i.i.d. with distribution functions ηi(h). Let Ei = E(ηi). We study the dy-
namics of the remaining service time, hence, the service discipline is of no importance. The
regime we are interested in is the underloaded regime; that means that for some δ > 0, all T

large enough and all t ≥ 0

∫ t+T

t

(
∑

i

λi(s)Ei

)

ds ≤ T (1 − δ) .

Let dμt(u) be the current distribution of the remaining service time. We want to study
the exponential moment

Qα(t) =
∫ ∞

0
qα(u)dμt (u), (55)

where qα(u) = eαu. We will show that the moment Qα(t) satisfies the equation

Qα(t) ≤ eC1−βtQα(0) + C2, t ≥ 0.

The statistics of the observable L will then be easy to derive.
Note that the underload condition ensures the absolute continuity of Qα(t). We will need

the quantities

�α
i =

∫ ∞

0

(
eαh − 1

)
dηi(h).

We assume that �α
i < +∞ for all α ≤ α with α > 0.

Before studying the moments (55), we will consider the situation of the “broken” server,
when the clients (of one type) only come, but are not served. The queue then only grows
in time, as is the workload u. The corresponding exponential moment will be denoted by
Q(1)

α (t). We have:

Q̇(1)
α (t) = λ(t)�αQ(1)

α (t). (56)

Indeed, the event of arrival of a user with service time h at the queue with the current
workload u shifts the workload to the value u + h, so the value of qα changes from eαu to
eα(u+h) = eαu + eαu(eαh − 1). In order to find Q̇(1)

α (t), we have to multiply the increment
eαu(eαh − 1) by the rate λ(t) of the arrival event and to integrate it with respect to dμt (u) ×
dη(h), since u and h are independent. In this way we arrive to (56).

Next, let us study the case of “broken pipe”, when the inflow is zero, so the server works
only on the initial supply of clients. The evolution of the distribution μt of the workload is
given by the following simple relation:

μt+s [a, b] =
{

μt [a + s, b + s] if 0 < a < b,

μt(−∞, b + s] if a ≤ 0 < b.
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In words, the atom at u = 0 grows with time. We denote the corresponding exponential
moment by Q(2)

α (t). The straightforward computation shows that

Q̇(2)
α (t) = αp0(t) − αQ(2)

α (t), (57)

where p0(t) is the current probability of the queue to be empty. Note that Q(2t)
α (t) is ab-

solutely continuous and (57) holds for almost all t .
In the general case of several inflows we put the two relations together to get

Q̇α(t) =
[(

∑

i

λi(t)�
α
i

)

− α

]

Qα(t) + αp0(t). (58)

Let us now rewrite �α
i . We have

�α
i =

∫ ∞

0

(
eαh − 1

)
dηi(h)

=
∫ ∞

0
αh dηi(h) +

∫ ∞

0

[
eαh − 1 − αh

]
dηi(h) ≡ αEi + αFi(α), (59)

where Ei is the mean service time and Fi(α) is continuous function of α ∈ [0, α], which
satisfies Fi(α) = O(α) as α → 0. From (58) and (59) we get for α < 1 the bound

Q̇α(t) ≤ α

[(
∑

i

λi(t)Ei

)

− 1 +
∑

i

λi(t)Fi(α)

]

Qα(t) + 1. (60)

The Euler scaling with parameter N changes λ(t) to λN(t) = Nλ(t) and η(h) to ηN(h) =
Nη(Nh). Hence, λN

i (t)EN
i does not depend on N. Let us show that NFN

i (α) is small for
all N , once α is small. Indeed,

NαFN(α) = N2
∫ ∞

0

[
eαh − 1 − αh

]
dη(Nh)

= N2
∫ ∞

0

[
e

α
N

Nh − 1 − α

N
Nh

]
dη(Nh)

= N2 α

N
F

(
α

N

)

∼ α2.

Hence, we get a uniform bound for α small enough and all N ≥ 1 simultaneously (and,
by the limit, for the fluid model “N = ∞” as well):

Q̇N
α (t) ≤ α

[
∑

i

λi(t) (Ei + κ (α)) − 1

]

QN
α (t) + 1, (61)

where κ(α) ∼ α.
The solution to the linear equation

ẋ(t) = a(t)x(t) + b(t)
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is given by the formula

x(t) = g(0, t)x(0) +
∫ t

0
g(s, t)b (s) ds,

where g(s, t) = e
∫ t
s a(τ )dτ . We apply it to (61), with x(t) = Qα(t), a(t) = α[∑i λi(t)(Ei +

κ(α)) − 1] and b(t) = 1. By the underload assumption,

∫ t

s

a(τ )dτ ≤ C1 − β(t − s)

for some C1, β > 0 and for all s < t , once α is small. Then,
∫ t

0 g(s, t)ds ≤ C2 for all t ≥ 0.
Hence,

Qα(t) ≤ eC1−βtQα(0) + C2, t ≥ 0.

In our case the distribution ηi is exponential with the parameter γi. Let us show finally
that the exponential bound on the workload implies an exponential bound on the number of
customers (may be, with another exponent).

Indeed, under the condition that we are in the state with n1 and n2 customers of two
classes, the conditional distribution of the workload u is a measure μn1n2 on (R1)+, with
mean value ū = n1

γ1
+ n2

γ2
. By convexity of the exponent,

∫
eαudμn1n2(u) ≥ eαū,

which provides us with the upper bound

e
α

γ1+γ2
(n1+n2) ≤

∫
eαudμn1n2(u).

Taking expectations with respect to n1(t), n2(t) we get

E

(
e

α
γ1+γ2

(n1(t)+n2(t))
)

≤
∫

eαudμt (u) = Qα(t),

which is the desired estimate. �

Proof of the Main Theorem The proof proceeds by “induction” in time. We suppose induc-
tively that at a certain (Euler) moment T the NLMP with the load N is in the state μ(T ),
having two properties:

〈exp {αL(x̄)}〉μ(T ) < 3A, (62)

ρKROV (μ (T ) , δx) < ε (63)

for some x ∈ C . We will show that there exists the time T ′, at which the same two conditions
hold for the measure μ(T + T ′)—except for different point x on the cycle C.

To see this we first consider the Non-Linear Dynamical System (NLDS) �∞, with initial
state μ(T ). In other words, �∞ = �∞(Ȳ (·)), for some Ȳ (·) ∈ Y(μ(T )). We can use the
Proposition 10, which tells us that for any T ′ large enough ρKROV(�T ′

∞μ(T ), δx(T ′)) < ε/3.
Choosing one such T ′ (uniformly in μ(T ), satisfying (62)–(63)) we can claim that for the
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NLMP evolution we have ρKROV(μ(T + T ′), δx(T ′)) < 2ε/3, provided only that N is large
enough; indeed, we know from Theorem 12 that the NLMP converges in the KROV metric
to NLDS on any finite time interval, as N → ∞, which convergence is uniform over the set
of initial measures satisfying (62). Note that we thus have reproduced the condition (63).

Proposition 11 tells us that for all t ≤ T ′ ρKROV(�t∞μ(T ), δx(t)) < ε̄(T ′, ε). Due to the
same convergence statement, for the NLMP evolution we have ρKROV(μ(T + t), δx(t)) <

2ε̄(T ′, ε) for all t ≤ T ′. In words, the measure μ(T + t) goes very close to the cycle tra-
jectory. Since we want to use Lemma 18, we can as well assume that T ′ > T , where T is
the time introduced in this lemma. Now all its conditions are satisfied, so Lemma 18 tells us
that 〈exp{αL(x̄)}〉μ(T +T ′) < 2A, thus the condition (62) is reproduced as well. �

7 Conclusions

Our main result indicates that there is an important similarity between large queuing net-
works and large systems of statistical mechanics. Namely, we have shown that the load per
server plays for some networks the same role as the inverse temperature in statistical me-
chanics. At high load the network can lose the property of uniqueness of the stationary state
and start to behave in the oscillatory manner. This phenomenon looks similar to the fact that
some 3D systems with continuous symmetry are not ergodic under Glauber dynamics, when
the temperature is low enough.

It is very interesting to understand how general this phenomenon is; our expectations are
that such non-ergodic behavior is a characteristic feature of the high load regime.

In the forthcoming publications we will show that the behavior in the low load regime
is always ergodic, which corresponds to the high temperature uniqueness of statistical me-
chanics.
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